THE OPEN UNIVERSITY OF SRI LANKA

Bachelor of Technology (Civil) - Level 5

092

CEX 5233 - STRUCTURAL ANALYSIS

FINAL EXAMINATION - 2008/2009

Time Allowed: 3 hours

Date: 2009-03-19 (Thursday) Time: 09.30 – 12.30 hrs.

The Paper consists of Eight (8) questions. Answer **Five (5)** questions

- 1(a) Set up the Stiffness matrix for the frame shown in Fig.Q-1(a). (Neglect axial deformation). (6 marks)
- (b) Analyse the structure shown in Fig.Q-1(b) using Flexibility method of structural analysis and draw the bending moment diagram. (14 marks)

(You may use Table-1 to determine stiffness and flexibility coefficients)

2. Analyse the continuous beam shown in figure Q-2 using Stiffness method of structural analysis and draw the bending moment diagram.

(You may use Table-1 to determine stiffness coefficients) (20 marks)

- 3.(a) What are the three main properties of stress tensor?
- (3 marks)
- (b) Write down the transformation law for the stress at a point.
- (3 marks)
- (c) The stress tensor at a point with reference to axes x,y,z is given by

$$\sigma_{ij} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Determine:

- (a) Stress invariants
- (b) Principal stresses
- (c) Principal axes
- (d) Directions of principal axes

(14 marks)

- **4.(a)** What is understood by a plane stress problem?
- (2 marks)
- **(b)** Show that $\Phi = Ay^3 + Bxy + Cxy^3$ is a valid stress function.
- (2 marks)
- **(b)** The above stress function is proposed to give the solution for a cantilever $(y = \pm \frac{d}{2}; 0 \le x \le L)$, carrying a concentrated end load of P.

Obtain values for constants A,B and C.

(12 marks)

(d) Write expressions for stress field σ_x , σ_y and σ_{xy} .

(4 marks)

F.g. Q-4

- 5.(a) In Plastic Theory, three conditions apply when a structure is on the point of collapse. What are they? (3 marks)
 - (b) Compare the safety factor in elastic design with the load factor in plastic design. (3 marks)
 - (c) Determine the value of collapse load \mathbf{q}_c for the continuous beam shown in Fig.Q-5, where the fully plastic moment is \mathbf{M}_p . (14 marks)

6. Analyse the two-storey portal-type structure shown in Fig.Q-6 using Plastic analysis and determine the plastic moment M_p . Use a load factor of 2. (20 marks)

Fig. Q-6

- 7.(a) What are the general assumptions made in the membrane theory of thin shells? (3marks)
 - (b) Use the membrane theory of thin shells to find expressions for meridianal stress (σ_{θ}) and hoop stress (σ_{Φ}) for a spherical shell of constant thickness \mathbf{h} , under its own weight \mathbf{q} per unit area. You may use the following governing equation for an axisymmetric shells under

axisymmetric loading;
$$\frac{N_{\theta}}{r_{2}} + \frac{N_{\Phi}}{r_{1}} = -p_{z}$$
(14 marks)

(c) Show that we can keep on reducing the thickness of the shell for material economy, as long as the serviceability requirements are met. (3 marks)

Fig. a - 7

8.(a) An isotropic annular plate of uniform thickness is simply supported at **r=a** and free at **r=b** as shown in the Fig.Q-8. It is subjected to a lateral concentric line total load of **P** along the inner periphery at radius **r=b**.

Derive an expression for the deflection of the plate, if the radial shear per unit length of the periphery at any distance **r** is given by

Of the periphery at any distance
$$V = g$$

$$Q_r = D \frac{d}{dr} (\nabla^2 \omega) = D \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{d\omega}{dr} \right) \right]$$
(15 marks)

(b) Hence find an expression for deflection of a circular plate simply supported at the edge and subjected to a concentrated load **P** at the centre. (5 marks)

Str

Structure	Shear 4	Moment (Slope	Deflection ↓				
Simply supported Beam								
(6A 8A	$S_A = -\frac{M_o}{L}$	M _o	$\theta_A = \frac{M_o L}{3EI},$ $\theta_B = -\frac{M_o L}{6EI}$	$Y_{\text{max}} = 0.062 \frac{M_o L^2}{EI}$ $at \ x = 0.422L$				
Δ _A	$S_A = \frac{W}{2}$	$M_o = \frac{WL}{4}$	$\theta_A = -\theta_B = \frac{WL^2}{16EI}$	$Y_c = \frac{WL^3}{48EI}$				
A 01 W 6	$S_A = \frac{Wb}{L}$ $S_B = \frac{Wa}{L}$	$M_o = \frac{Wab}{L}$	$\theta_A = \frac{Wab}{6EIL}(L+b)$ $\theta_B = -\frac{Wab}{6EIL}(L+a)$	$Y_o = \frac{Wa^2b^2}{3EIL}$				
Entrine P	$S_A = \frac{WL}{2}$	$M_c = \frac{WL^2}{8}$	$\theta_A = -\theta_B = \frac{W L^3}{24EI}$	$Y_c = \frac{5WL^4}{384EI}$				
	$S_A = \frac{WL}{6}$ $S_B = \frac{WL}{3}$	$M_{\text{max}} = 0.064Wl^2$ $at \ x = 0.577L$	$\theta_A = \frac{7WL^3}{360EI}$ $\theta_B = -\frac{8WL^3}{360EI}$	$Y_{\text{max}} = 0.00652 \frac{WL^4}{EI}$ $at \ x = 0.519L$				
A	$S_A = \frac{WL}{4}$	$M_c = \frac{WL^2}{12}$	$\theta_A = -\theta_B = \frac{5W L^3}{192EI}$	$Y_c = \frac{WL^4}{120EI}$				
Fixed Beams								
A #; B	$S_A = \frac{W}{2}$	$M_c = \frac{WL}{8}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{WL^3}{192EI}$				
A J N L B	$S_A = \frac{Wb^2}{L^3} (3a+b)$ $S_B = \frac{Wa^2}{L^3} (3b+a)$	$M_A = -\frac{Wab^2}{L^2}$ $M_B = -\frac{Wba^2}{L^2}$	$\theta_A = \theta_B = 0$	$Y_o = \frac{Wa^3b^3}{3EIL^3}$				
*4	$S_A = \frac{WL}{2}$	$M_A = M_B = -\frac{WL^2}{12}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{WL^4}{384EI}$				
A 9 TOTAL B	$S_A = \frac{3WL}{20}$ $S_B = -\frac{7WL}{20}$	$M_A = -\frac{WL^2}{30}$ $M_B = -\frac{WL^2}{20}$	$\theta_A = \theta_B = 0$	$Y_{\text{max}} = 0.00131 \frac{WL^4}{EI}$ $at \ x = 0.525L$				
A CONTRACTOR OF THE CONTRACTOR	$S_A = \frac{WL}{4}$	$M_A = M_B = -\frac{5WL^2}{96}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{0.7WL^4}{384EI}$				

Structure	Shear 4	Moment ()	Slope V	Deflection ↓			
Cantilever-Beam—							
A C B	0	M_o	$\theta_A = \frac{M_o L}{EI}$	$Y_A = \frac{M_o L^2}{2EI}$			
A B	W	$M_B = -WL$	$\theta_A = -\frac{WL^2}{2EI}$	$Y_A = \frac{WL^3}{3EI}$			
*CITALITY B	$S_B = -WL$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{6EI}$	$Y_A = \frac{WL^4}{8EI}$			
, ————————————————————————————————————	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{6}$	$\theta_A = -\frac{WL^3}{24EI}$	$Y_A = \frac{WL^4}{8EI}$			
A 111111111111111111111111111111111111	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{8EI}$	$Y_A = \frac{11WL^4}{120EI}$			
Propped Cantilever							
B B	$S_A = -\frac{3M_o}{2L}$	$M_B = -\frac{M_o}{2}$	$\theta_A = -\frac{M_o L}{4EI}$	$Y_{\text{max}} = \frac{M_o L^2}{27EI}$ $at \ x = \frac{1}{3}$			
A D C TB	$S_A = -\frac{3M_o}{2L}$	$M_B = -\frac{3WL}{16}$ $M_c = \frac{5WL}{32}$	$\theta_{A} = \frac{WL^{2}}{32EI}$	$Y_{\text{max}} = 0.00962 \frac{V}{E}$ $at x = 0.447$			
MA C TWD DB	$S_A = \frac{Wb^2}{2L^3} (a + 2L)$ $S_B = -\frac{Wa}{2L^3} (3L^2 - a^2)$	$M_B = -\frac{Wab}{L^2} \left(a + \frac{b}{2}\right)$	$\theta_A = \frac{Wab^2}{4EIL}$	$Yo = \frac{Wa^2b^2}{12EIL^3} (3$			
ADTACH NO.	$S_A = +\frac{3WL}{8}$	$M_B = -\frac{WL^2}{8}$	$\theta_A = \frac{WL^3}{48EI}$	$Y_{\text{max}} = 0.0054 \frac{V}{I}$ $at x = 0.$			
AA B	$S_A = +\frac{WL}{10}$	$M_{\text{max}} = 0.03WL^{2}$ $at x = 0.447L$ $M_{B} = -\frac{WL^{2}}{15}$	$\theta_A = \frac{WL^3}{120EI}$	$Y_{\text{max}} = 0.00239$ $at x = 0.$			
A THE B	$S_A = \frac{11WL}{40}$	$M_{\text{max}} = 0.0423WL^2$ $at x = 0.329L$ $M_B = -\frac{7WL^2}{120}$	$\theta_A = \frac{WL^3}{80EI}$	$Y_{\text{max}} = 0.00305$ $at \ x = 0.00305$			