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Date: 2009-03-19 (Thursday) Time: 09.30 — 12.30 hrs.
The Paper consists of Eight (8) questions. Answer Five (5) questions

1(a)  Set up the Stiffness matrix for the frame shown in Fig.Q-1(a). (N eglect axial
deformation). (6 marks)

(b)  Analyse the structure shown in Fig.Q-1(b) using Flexibility method of structural
analysis and draw the bending moment diagram. (14 marks)

(You may use Table-1 to determine stiffness and flexibility coefficients)
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2.  Analyse the contiﬁuous beam shown in figure Q-2 using Stiffness method of
‘ structural analysis and draw the bending moment diagram.
(You may use Table-1 to determine stiffness coefficients) (20 marks)
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What are the three main properties of stress tensor? (3 marks)

3.(a)
(b) Write down the transformation law for the stress at a point. (3 marks)
(¢) The stress tensor at a point with reference to axes x,y,z is given by
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Determine:
(a) Stress invariants
(b)  Principal stresses
(c) Principal axes
(d)  Directions of principal axes (14 marks)
4.(a) What is understood by a plane stress problem? (2 marks)
(b) Show that ® = Ay® + Bxy+ Cxy’ is a valid stress function. (2 marks)
(b)' The above stress function is proposed to give the solution for a cantilever
(y= i% . 0 < x< L) ,carrying a concentrated end load of P.
Obtain values for constants A,B and C. (12 marks)
(d) Write expressions for stress field 0,0 ando,,. (4 marks)
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5.(a) In Plastic Theory, three conditions apply when a structure is on the point of

collapse. What are they? (3 marks)
() Compare the safety factor in elastic design with the load factor in plastic design.
’ _ (3 marks)
(¢) Determine the value of collapse load g for the continuous beam shown in
Fig.Q-5, where the fully plastic moment is M. (14 marks)
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6. Analyse the two-storey portal-type structure shown in Fig.Q-6 using Plastic
analysis and determine the plastic moment My. Use a load factor of 2.
(20 marks)
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7.(a) What are the general assumptions made in the membrane theory of thin shells?
' : (3marks)
(b) Use the membrane theory of thin shells to find expressions for meridianal stress
: (o¢) and hoop stress (o) fora spherical shell of constant thickness h, under its
own weight ¢ per unit area.
You may use the following governing equation for an axisymmetric shells under
axisymmetric loading;
o4 ® = p, (14 marks)
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(¢) Show that we can keep on reducing the thickness of the shell for material
cconomy, as long as the serviceability requirements are met. . (3 marks)
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8.(a) An isotropic annular plate of uniform thickness is simply supported at r=a and
free at r=b as shown in the Fig.Q-8. It is subjected to a lateral concentric line total
load of P along the inner periphery at radius r=b.
Derive an expression for the deflection of the plate, if the radial shear per unit
length of the periphery at any distance r is given by
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(b) - Hence find an expression for deflection of a circular plate simply supported at the
edge and subjected to a concentrated load P at the centre. h
(5 marks)
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Table 1

Formulas for Beams
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Tablel - Formulas for Beams
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