inning om an 1. The of the If the using ition.

and hese

THE OPEN UNIVERSITY OF SRI LANKA

Bachelor of Technology (Civil) - Level 5

CEX 5233 - STRUCTURAL ANALYSIS

FINAL EXAMINATION - 2009/2010

Time Allowed: 3 hours

Date: 2010-03-12 (Friday)

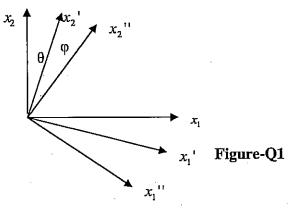
Time: 09.30 - 12.30 hrs.

The Paper consists of Eight (8) questions. Answer Five (5) questions

1.(a) Figure-Q1 shows sets of axes x_1', x_2' and x_1'', x_2'' which are obtained from x_1, x_2 by a clockwise rotation through θ and φ respectively.

Write down the array of direction cosines of the "dashed" axes referred to the "un-dashed" axes. (2 marks)

Write down the array of direction cosines of the "double-dashed" axes referred to the "dashed" axes.



(2 marks)

(b) The stress tensor at a point with reference to axes x,y,z is given by

$$\sigma_{y} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & \sqrt{3} \\ 0 & \sqrt{3} & 6 \end{bmatrix} \text{kN/m}^{2}$$

Determine:

- (a) Stress invariants
- (b) Principal stresses
- (c) Principal axes
- (d) Directions of principal axes

(16 marks)

2.(a) What do you understand by a plane strain problem?

(2 marks)

(b) Show that

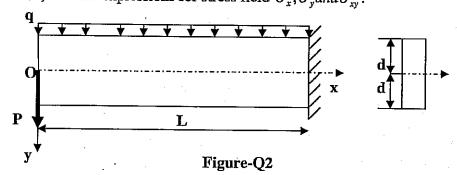
$$\Phi = Ay^{2} + By^{3} + \frac{q}{40d^{3}}y^{5} - 3Cd^{2}xy + Cxy^{3} - \frac{q}{4}x^{2} + \frac{3q}{8d}x^{2}y - \frac{q}{8d^{3}}x^{2}y^{3} \text{ is a valid stress function.}$$
(2 marks)

(c) The above stress function is proposed to give the solution for a cantilever having a rectangular cross-section of unit width ($y = \pm d$; $0 \le x \le L$), carrying a concentrated end load of P and a uniformly distributed load q on the upper boundary. Obtain values for constants A,B and C.

Write expressions for stress field σ_x , σ_y and σ_{xy} .

(4 marks)

(12 marks)



- 3. Analyse the continuous beam shown below, using flexibility method, for
 - a uniformly distributed load of intensity q on spans BC and CD

(12marks)

a unit downward movement of support C (b) and draw the bending moment diagrams. The beam has a constant flexural rigidity EI.

(8marks)

(You may use Table-1 to determine flexibility coefficients)

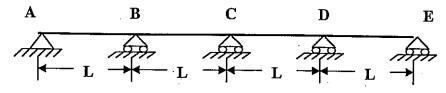


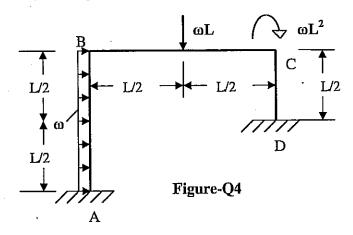
Figure-Q3

4. The plane frame shown in the figure-Q4, consists of rigidly connected members of constant flexural rigidity EI. Analyse the frame using displacement method and draw the Bending Moment diagram.

Neglect axial deformation.

(20marks)

(You may use Table-1 to determine stiffness coefficients)



5.(a) What are the general assumptions made in the membrane theory of thin shells? (3marks)

A spherical dome of radius a is subjected to a uniformly distributed load ω on plan, as shown in the figure Q-5.

(b) Show that the expressions for Meridianal Stress (σ_{Φ}) and Hoop Stress (σ_{θ}) are given by

$$\sigma_{\Phi} = -\frac{a\omega}{2h}$$
 ; $\sigma_{\theta} = -\frac{a\omega}{2h}Cos2\Phi$

where h is the thickness of the shell.

(12marks)

(c) Also show that the maximum value of φ that can be allowed is 45°, if the shell is made out of concrete. (5marks)

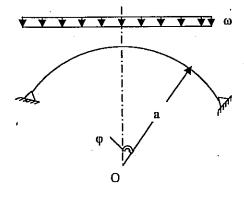


Figure Q-5

A circular plate of radius a is carrying a concentrated load P at the centre.

Assuming that the edge of the plate is built-in, show that the deflection of the plate is given by;

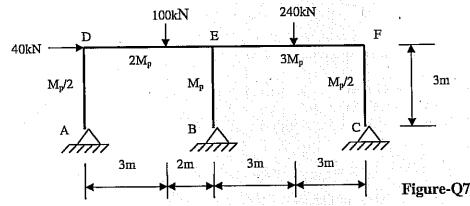
$$\omega = \frac{\Pr^2}{8\pi D} Log \frac{r}{a} + \frac{P}{16\pi D} \left(a^2 - r^2\right)$$
 (13 marks)

Hence determine the maximum deflection of the plate. (3marks)

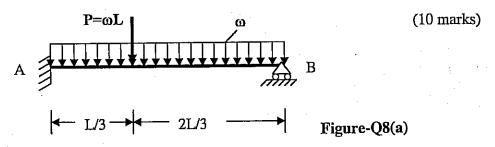
Also find the moment M_r at built-in edge. (4marks)

- 7.(a) In Plastic Theory, three conditions apply when a structure is on the point of collapse. What are they? (3 marks)
 - (b) Analyse the rigid frame shown below using plastic method of analysis and determine the Plastic Moment M_p , for a load factor of 1.8.

(17 marks)



8.(a) Determine the collapse load for the fixed beam shown in the figure below, if the Plastic Moment Capacity of the beam is M_P .



(b) Determine the ultimate load for the propped cantilever shown in the figure below, if the Plastic Moment Capacity of the beam is M_P .

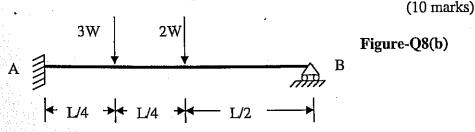
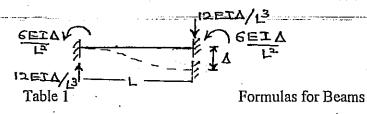


Table 1

Formulas for Beams

Structure	Shear 4	Moment (Slope V	Deflection ↓				
Simply supported Beam								
(A) C BA	$S_A = -\frac{M_o}{L}$	M_a	$\theta_{A} = \frac{M_o L}{3EI}$ $\theta_B = -\frac{M_o L}{6EI}$	$Y_{\text{max}} = 0.062 \frac{M_o L^2}{EI}$ at $x = 0.422L_2$ $U_C = M_o L^2 / 16C$				
ΔA C BZ	$S_A = \frac{W}{2}$	$M_o = \frac{WL}{4} \qquad \theta_A = -\theta_B = \frac{WL^2}{16EI}$		$Y_c = \frac{WL^3}{48EI}$				
Ø1	$S_A = \frac{Wb}{L}$ $S_B = \frac{Wa}{L}$	$M_o = \frac{Wab}{L}$	$\theta_A = \frac{Wab}{6EIL}(L+b)$ $\theta_B = -\frac{Wab}{6EIL}(L+a)$	$Y_o = \frac{Wa^2b^2}{3EIL}$				
que in p	$S_A = \frac{WL}{2}$	$M_c = \frac{WL^2}{8}$	$\theta_A = -\theta_B = \frac{W L^3}{24EI}$	$Y_c = \frac{5WL^4}{384EI}$				
	$S_A = \frac{WL}{6}$ $S_B = \frac{WL}{3}$	$M_{\text{max}} = 0.064Wl^2$ at $x = 0.577L$	$\theta_A = \frac{7WL^3}{360EI}$ $\theta_B = -\frac{8WL^3}{360EI}$	$Y_{\text{max}} = 0.00652 \frac{WL^4}{EI}$ $at \ x = 0.519L$				
A C BB	$S_A = \frac{WL}{4}$	$M_c = \frac{WL^2}{12}$	$\theta_A = -\theta_B = \frac{5W L^3}{192EI}$	$Y_c = \frac{WL^4}{120EI}$				
Fixed Beams								
A. J. W B	$S_A = \frac{W}{2}$	$M_c = \frac{WL}{8}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{WL^3}{192EI}$				
A	$S_A = \frac{Wb^2}{L^3} (3a+b)$ $S_B = \frac{Wa^2}{L^3} (3b+a)$	$M_A = -\frac{Wab^2}{L^2}$ $M_B = -\frac{Wba^2}{L^2}$	$\theta_A = \theta_B = 0$	$Y_o = \frac{Wa^3b^3}{3EIL^3}$				
**************************************	$S_A = \frac{WL}{2}$	$M_A = M_B = -\frac{WL^2}{12}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{WL^4}{384EI}$				
ag TITTE	$S_A = \frac{3WL}{20}$ $S_B = -\frac{7WL}{20}$	$M_A = -\frac{WL^2}{30}$ $M_B = -\frac{WL^2}{20}$	$\theta_A = \theta_B = 0$	$Y_{\text{max}} = 0.00131 \frac{WL^4}{EI}$ $at \ x = 0.525L$				
AJULITURE C	$S_A = \frac{WL}{4}$	$M_A = M_B = -\frac{5WL^2}{96}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{0.7WL^4}{384EI}$				



Structure	Shear 4	Moment ()	Slope V	Deflection				
Cantilever-Beam-								
K (B	0	M_o	$\theta_A = \frac{M_o L}{EI}$	$Y_A = \frac{M_1}{2l}$				
A Las	W	$M_B = -WL$	$\theta_A = -\frac{WL^2}{2EI}$	$Y_A = \frac{M}{3!}$				
W CLASSIAN B	$S_B = -WL$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{6EI}$	$Y_A = \frac{W_1}{8E}$				
,	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{6}$	$\theta_A = -\frac{WL^3}{24EI}.$	$Y_A = \frac{W_L^U}{8E}$				
A TITTING 8	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{8EI}$	$Y_A = \frac{11\%}{1201}$				
Propped Cantilever								
(A) B	$S_A = -\frac{3M_a}{2L}$	$M_B = -\frac{M_o}{2}$	$\theta_A = -\frac{M_o L}{4EI}$	$Y_{\max} = \frac{M_d}{27!}$ $at x =$				
A A. C B	$S_A = -\frac{3M_o}{2L}$	$M_{B} = -\frac{3WL}{16}$ $M_{c} = \frac{5WL}{32}$	$\theta_A = \frac{WL^2}{32EI}$	$Y_{\text{max}} = 0.00962$ $atx = 0.4$				
A C T B B	$S_{A} = \frac{Wb^{2}}{2L^{3}}(a+2L)$ $S_{B} = -\frac{Wa}{2L^{3}}(3L^{2} - a^{2})$	$M_B = -\frac{Wab}{L^2}(a + \frac{b}{2})$	$\theta_A = \frac{Wab^2}{4EIL}$	$Yo = \frac{Wa^2b^2}{12EIL^3}$				
A 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$S_A = +\frac{3WL}{8}$	$M_B = -\frac{WL^2}{8}$	$\theta_A = \frac{WL^3}{48EI}$	$Y_{\text{max}} = 0.0054$ $at x = 0.0054$				
A _A	$S_A = +\frac{WL}{10}$	$M_{\text{max}} = 0.03WL^{2}$ $at x = 0.447L$ $M_{B} = -\frac{WL^{2}}{15}$	$\theta_A = \frac{WL^3}{120EI}$	$Y_{\text{max}} = 0.0023$ $at x = 0$				
A TITLE B	$S_A = \frac{11WL}{40}$	$M_{\text{max}} = 0.0423 WL^2$ at x = 0.329 L $M_B = -\frac{7WL^2}{120}$	$\theta_A = \frac{WL^3}{80EI}$	$Y_{\text{max}} = 0.0030$ $nt x = 0$				