THE OPEN UNIVERSITY OF SRI LANKA DIPLOMA IN TECHNOLOGY - FOUNDATION (LEVEL 01)

FINAL EXAMINATION - 2005

MPF 1301 - PURE MATHEMATICS II

DURATION - THREE (03) HOURS

DATE: 16th March 2006

TIME: 09.30 - 12.30 p.m.

YOU CANT USE MOBILE PHONES AS A CALCULATORS. ANSWER (06) QUESTIONS ONLY BY SELECTING AT LEAST ONE QUESTION FROM EACH SECTION. YOU CAN USE CALCULATORS.

SECTION - A

If Ur is the rth term of the series 01. a)

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$$

Find the expression for Ur.

Given that $f(r) = \frac{1}{r}$ show that

$$Ur=f(r)-f(r+1)$$

Hence find $\sum_{r=1}^{n} Ur$

Deduce that
$$\sum_{r=1}^{\infty} Ur = 1$$

Solve the equations $x^2-xy=6$ $y^2-xy=10$ b)

Prove the following inequalities given that p,q,r are real, $p \neq q \neq r$: and a,b,c, are 02. positive and $a \neq b \neq c$.

a)
$$p^2+q^2>2pq$$

b)
$$\frac{a+b}{2} > \sqrt{ab}$$

c)
$$p^2+q^2+r^2>pq+qr+rp$$

d)
$$P^3+q^3+r^3>3 pqr$$

e)
$$\frac{a+b+c}{3} > \sqrt[3]{abc}$$

e)
$$\frac{a+b+c}{3} > \sqrt[3]{abc}$$
 f) $\frac{1}{3}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) > \sqrt[3]{\frac{1}{abc}}$

i.
$$f(x) = -x^2 + 2x + 3$$

ii.
$$g(x) = x^2 + x + 1$$

iii.
$$h(x) = x^2 + 4x + 4$$

iv.
$$k(x) = x^2 - 4x - 5$$

Express the above four functions, in the form of a $a[x + \lambda] \pm \mu^2$ where a, λ and μ are the constants to be determine.

b) Hence sketch the graphs of the functions y=f(x), y=g(x), y=h(x) and y=k(x)Indicate clearly in the graphs, the greates/least values of the functions, symmetrical axes of the graphs and the values of x such that f(x)=0, g(x)=0 h(x)=0 and k(x)=0.

SECTION - B

ii.
$$(CosecA-SinA)(SecA-CosA) \equiv CosA Sin A$$

iii.
$$(\operatorname{Sec}^2\theta + \operatorname{Tan}^2\theta)(\operatorname{Cosec}^2\theta + \operatorname{Cot}^2\theta) \equiv 1 + 2\operatorname{sec}^2\theta \operatorname{cosec}^2\theta$$

iv.
$$\frac{\tan^2 A + \cos^2 A}{SinA + SecA} \equiv SecA - SinA.$$

b) PQR is a triangle, **X** is the mid point of the line QR, XA and XB are the perpendiculars to PQ and PR respectively. If PQ=PR show that AX=XB.

05. a) Find the general solutions of the following equations.

i.
$$\cot 2\theta = \tan \theta$$

ii.
$$Tan3\theta = \sqrt{3}$$

iii.
$$2\cos^2 x - \sqrt{3}\sin x + 1 = 0$$

As x increase from $(0,2\pi)$ rad sketch the graph of y=f(x)=Sinx-Cosx-1. b) Indicate clearly in the graph the maximum and minimum values of f(x).

Find he values of x, such that f(x)=0.

Using the usual notation, show that for an acute triangle ABC. 06. a)

a=bcosC+c Cos B

ii. $\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{Sinc}$

By using part (ii)

Deduce that $\frac{a^2 - b^2}{c^2} = \frac{Sin(A - B)}{Sin(A + B)}$

One side of a rhombus lies along the line 5x+7y=1 and one of the vertices is (3, -1)b) one diagonal of the rhombus is the line 3y=x+1 find the coordinates of the other vertices and the equations of the three remaining sides.

SECTION C

Evaluate the limits. 07. a)

 $t \xrightarrow{Lt} \pi \frac{(1 + Cost)}{(t - \pi)^2} \qquad \text{ii.} \qquad x \xrightarrow{Lt} 0 \frac{\sqrt{1 - x} - \sqrt{1 + x}}{x}$

Find the differential coefficient (derivatives) of the following with respect to x.

i. $y=e^{-bx}Sin ax-e^{-bx}Cosax$ ii. $y=Tan^{-1}\sqrt{\frac{b-x}{x-a}}$ y=x>0b)

¥=Cos(Sinx) prove that c)

$$\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + \mathbf{y}Cos^2x = 0$$

Hence deduce that if $\mathbf{\mathcal{Y}}' = Cos(COsx)$ then.

$$\frac{d^2y'}{dx^2} - Cotx \frac{dy'}{dx} + y'^2 Sin^2 x = 0$$

08. a) Given that
$$y = \frac{2x}{1 + x^2}$$

Find the values of x for which
$$\frac{dy}{dx} = 0$$

Hence determine the nature of those stationary values of y. Find the behaviour of \$\mathbf{y}\$,

When |x| tends to very large values.

Sketch the curve
$$y = \frac{2x}{1+x^2}$$

- A cylindrical one end open vessel has to be constructed as to hold exactly 0.5m³ capacity. If the amount of material area is to be kept at the minimum. Find the measurements of the vessel.
- Integrate the following with respect to x. 09. a)

i.
$$\int \frac{dx}{1 - Cos2x}$$

ii.
$$\int (Co\sec x + Cotx)^2 dx$$

iii.
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{3 + 5Sinx}$$

iii.
$$\int_{2}^{\frac{\pi}{2}} \frac{dx}{3 + 5Sinx}$$
 iv.
$$\int e^{3x} Sin3x dx$$

- Using the substitution $x=4 \sin^2 \theta$ or other wise b) Show that $\int_0^2 \sqrt{x(4-x)} dx = \pi$
- Using the substitution z=1-x or otherwise, evaluate c) $\int_{0}^{1} x^{2} (1-x)^{\frac{1}{2}} dx$

10. a) Find the partial fractions of
$$\frac{2x}{(1-x)(1+x^2)}$$

Hence show that
$$\int_0^2 \frac{2x}{(1-x)(1+x^2)} dx = \frac{1}{2} \ln 5 - Tan^{-1} 2$$

b) Find
$$\int_0^2 \frac{(x+1)dx}{\sqrt{x^2+2x+8}}$$
 By substituting $U=x^2+2x+8$

Calculate the area bounded by the lines ox=0, x=1, y=1 and the part of the g of $y = \frac{x^2}{x^2 + 1}$ between x=0 and x=1.

-Copyrights reserved-