THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF ENGINEERING TECHNOLOGY DIPLOMA IN TECHNOLOGY – LEVEL 4

FINAL EXAMINATION 2005/2006

MEX 4233/MED 2204 – MATERIALS ENGINEERING – PART B

DATE

: 22ND MARCH 2006 : 1015-1230 HRS

TIME

DURATION : 2 HOURS AND 15 MINUTES

PART B

- (a) Define the following terms.
 - (i) Crystal structure
 - (ii) Unit cell
 - (iii) Atomic Packing factor
- (b)Gold belongs to the cubic crystal system with an atomic mass of 196.97 g/mol. The lattice constant of gold is 4.0788x10⁻¹⁰ m and its density is 19.3 g/cm³.

ANSWER FIVE QUESTIONS ONLY. ALL QUESTIONS CARRY EQUAL MARKS.

- (i) Determine the number of atoms per unit cell of gold, and identify the type of the unit cell. Take the Avogadro's number as 6.023×10^{23} mol⁻¹.
- (ii) Determine the atomic radius of gold.
- . (a)Explain the meaning of "toughness" with particular reference to mechanical properties of materials.

Distinguish clearly between notch-impact toughness and fracture toughness.

- (b)Discuss the effect of strain rate and temperature on the toughness of engineering materials.
- (c)Describe how the ductile-brittle transition temperature of a given material is experimentally determined.
- (a) Derive the lever rule for a Binary system.
 - (b) Consider 1 kg of plain carbon steel containing 1.1 wt% of C, heated to 1000°C, held for a long period, and then slowly cooled to a temperature below 650°C. Using Fig. (3) answer the following.
 - (i) What are the equilibrium phase or phases at 1000°C and their compositions?
 - (ii) At what temperature does the pro eutectoid phase start to form? What is the name and the composition of this pro eutectoid phase?
 - (iii) At 650°C, how many kilograms each of total ferrite and cementite form?

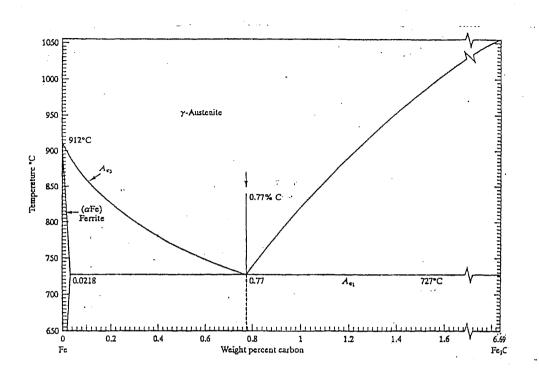


Fig.3

- 4. (a) State Flick's first and second laws of Diffusion.
 - (b) During a carburizing experiment diffusivity at the temperature of 850°C was found to be 7.4x10⁻⁸ cm²/sec. The depth of the carburized layer when the specimen was held for 4 hours at 850°C was found to be the same when it was held for 1 hour at 950°C. In the second case the surface of the specimen had a carbon content of 1.2%, whereas in the first case it was 0.2%.
 - (i) Calculate the diffusivity at 950°C.
 - (ii) Find the carburizing time to achieve a carbon content of 0.4% at a depth of 1 mm at 950°C. The error function values are given in the table below.

Z	erfZ
0.2	0.2227
0.4	0.4284
0.6	0.6039
0.8	0.7421
1.0	0.8427

(iii) Compute the activation energy for the process. (Assume $k - Boltzmann's constant = 8.6x10^{-5} eV K^{-1}$)

Page 2 Of 4

- 5. Discuss and analyze the significance of any <u>two</u> of the following from an engineering point of view.
 - (i) TTT curves
 - (ii) Plastics
 - (iii) Fatigue limit or the endurance limit
 - (iv) Mechanical properties of materials
- 6. (a) Describe the following three major polymer categories with the aid of diagrams showing their general structure.
 - (i) Thermoplastics
 - (ii) Thermosets
 - (iii) Elastomers
- (b) Molecular weight data for a Polytetra-Fluoroethylene (PTFE) material are tabulated below. Compute the following.
 - (i) The number average molecular weight
 - (ii) The weight average molecular weight
 - (iii) The number average degree of polymerization

(Atomic weight of C = 12.01, F = 19)

Molecular weight	X_{i}	W_i
range		
(g/mole)		
10,000-20,000	0.03	0.01
20,000-30,000	0.09	0.04
30,000-40,000	0.15	0.11
40,000-50,000	0.25	0.23
50,000-60,000	0.22	0.24
60,000-70,000	0.14	0.18
70,000-80,000	0.08	0.12
80,000-90,000	0.04	0.07

- 7.(a) Discuss the advantages of using composite materials in engineering applications giving at least two examples.
 - (b) Identify and describe the types of bonds present in ceramic materials.
 - (c) Explain how chain silicate structure and sheet silicate structure are produced by the basic tetrahedron silicate structure.

- 8.(a) Draw a typical creep curve for a metal under a constant load and at a relatively high temperature. Briefly explain all three stages of creep.
 - (b) Two Aluminium samples were tested for creep at 200°C with one sample subjected to a stress of 60 MPa and the other 35 MPa. The following observations were made.

Time (Hr)	Strain at 60 MPa	Strain at 35 MPa
	(mm/mm)	(mm/mm)
0	0.320	0.108
20	0.532	0.215
60	0.815	0.332
90	1.000	0.400
120	1.200	0.477
140	1.320	0.532
170	1.477	0.610
220	1.800	0.723

- (i) Plot strain-time characteristic curves and evaluate the steady state creep rates for each stress.
- (ii) Calculate the value of stress that would give rise to a minimum creep rate of $4.8 \times 10^{-3} \; hr^{-1}$. Assume that the material follows the Norton equation, $d\epsilon/dt = C \; \sigma^n$, where C and n are material constants.
- 9. (a) Describe and differentiate crevice corrosion and stress corrosion cracking.
 - (b) Explain the methods of prevention of stress corrosion cracking.
 - (c) What is Pilling Bed Worth ratio?
 - (d) Explain, how the oxidation resistance of a metal can be increased by alloying.

All Rights Reserved.