

THE OPEN UNIVERSITY OF SRI LANKA DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ECX4242/ECD2215 – CONTROL SYSTEMS FINAL EXAMINATION– 2006/2007

CLOSED BOOK

DATE: 7th April 2007

0930 hrs - 1230 hrs

Answer the question 1 and any other 4 questions. All questions carry equal marks.

Q1) (a)

Figure Q1(a)

Figure Q1(a) shows a closed loop control system which is used to maintain the liquid level of a tank. Here, our objective is to keep the liquid level at the height of h_1 . The existing liquid level is h_2 and T_1 , T_2 are the inlet valve and outlet valve respectively.

- (i) By studying the given schematic diagram, explain the operation of this liquid level control system.
- (ii) Draw a complete block diagram, identifying each block and write down the functions of each unit.

(b) Figure Q1(b)shows a spring mass dashpot system mounted on a massless cart. Here, x(t) is the displacement of the cart and is the input to the system and the displacement y(t) of the mass is the output. At t=0, the cart is moving at a constant speed. In this system, m denotes the mass, b denotes the viscous friction coefficient and b denotes the spring constant.

Obtain the necessary differential equations for the dynamics of this system by assuming that the cart is standing still for t<0 and the spring-mass-dashpot system on the cart is also standing still for t<0.

Figure Q1(b)

- Q2) (i) Using the differential equations obtained in Q1(b), find the transfer function of the system when b = 9, k = 20 and m = 1.
 - (ii) Find the output y(t), when
 - i. The input is a unit step. i.e. x(t) = u(t)
 - ii. The input is a ramp input. i.e. x(t) = tu(t).
 - (iii) Obtain the steady state value for each case.

Figure Q3

- (a) Draw the signal flow graph for the block diagram given in figure Q3.
- (b) Use Mason's Gain Formula to obtain the transfer function C(s)/R(s) of the system. (Clearly show all steps.)
- (c) Hence or otherwise find E(s)/R(s).
- Q4) (a) Define the following terms regarding a 2nd order transfer function
 - i. Percent Overshoot
 - ii. Settling time
 - iii. Rise time and
 - iv. Peak time
 - (b) System performance specifications are often given in the time domain.

Consider the following specifications:

Percent Overshoot <= 16%

Settling Time $(2\%) \le 2 s$

Rise Time <= 0.6 s

Based on these specifications, answer the following questions.

- (i) Sketch the lines defining each of these specifications in the s-plane. Shade the area of the graph that meets all three specifications. Be sure to indicate which line(s) correspond to which specification.
- (ii) Determine a 2nd order transfer function that meets the first two specifications exactly (i.e. %OS = 16% and Settling Time = 2s).
- (iii) Roughly sketch the step response for the transfer function found in (b)(ii) showing the rise time, settling time and percent overshoot on your sketch.

Note: You can use the data in Table A to answer this question.

- Q5) A unity negative feedback control system has the open loop transfer function $G(s)H(s) = \frac{K}{s^2(s+3)}$ where K is a positive constant.
 - (i) Determine the characteristic equation of the system.
 - (ii) Sketch the Root Locus as K increases from 0 to ∞ , stating the locations and directions of significant features of the diagram.
 - (iii) The system is modified so that

$$G(s)H(s) = \frac{K}{s(s+3)(s+a)}$$
 where a is a positive constant.

Now determine the modified characteristic equation and describe the effect on the Root Locus as the value of a is increased from 0 to 3. Detailed work is not necessary for this part. Just show how the Root Locus changes by using a simple sketch.

- Q6) (a) Briefly explain the following terms related to a control system.
 - i) Frequency response
 - ii) Relative stability
 - iii) Bandwidth
 - (b) Consider the open loop transfer function of a unity negative feedback closed loop control system as

$$G(s) = \frac{100}{s(s+2)(s+3)}$$

- (i) Draw the asymptotic Bode Plot of the system.
- (ii) Obtain the phase margin and the gain margin of the system and comment on the stability of the system.
- Q7) Plot the Nyquist diagram for a unity negative feedback control system with open loop transfer function:

$$G(s)H(s) = \frac{K}{s^2(s+3)}$$
 where K is a positive constant.

Hence determine the range of *K* for which the system is stable. Find the gain margin and phase crossover frequency of the system.

Q8) The open loop frequency response of a unity feedback control system is given in Table Q8. A series lead compensator, having a transfer function (1+0.5s), is to be inserted in the forward path of the system to improve its performance.

ω (rad/s)	1	2	5	10	20	30
Gain (dB)	26	20	. 4	-10	-20	-24
Phase (deg)	-120	-140	-164	-176	-184	-190

Table Q8

- (i) Construct the straight line approximations to the Bode plots of gain (dB) and phase for the compensator.
- (ii) Plot the Nichol's Chart for the compensated system and for the uncompensated system.
- (iii) Estimate the 3dB bandwidth, in rad/s, of the compensated closed loop control system. Compare this with the uncompensated system.

Selected equations of Time Response

Selected equations of fille Response				
$G(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$	$\sigma = \zeta \omega_n$ $\omega_d = \omega_n \sqrt{1 - \zeta^2}$			
$t_r \cong \frac{1.8}{\omega_n}$	$t_s \cong \frac{4}{\sigma}$			
$\zeta = \frac{-\ln(M_p)}{\sqrt{\pi^2 + \ln^2(M_p)}}$	$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}, 0 \le \zeta < 1$ and $M_p = \frac{\%OS}{100}$			
$T_p = \frac{\pi}{\omega_n \sqrt{1 - \varsigma^2}} = \frac{\pi}{\omega_d}$	$\%05 \cong \begin{cases} 5\%, \zeta = 0.7 \\ 16\%, \zeta = 0.5 \\ 20\%, \zeta = 0.45 \end{cases}$			

Table A

