THE OPEN UNIVERSITY OF SRI LANKA DIPLOMA IN TECHNOLOGY- FOUNDATION LEVEL 02

FINAL EXAMINATION - 2007

MPZ 2230 - MATHEMATICS - PAPER II

DURATION - THREE (03) HOURS

DATE: 04th May 2008

TIME: 9.30 a.m. - 12.30 p.m.

ANSWER SIX (06) QUESTIONS ONLY BY SELECTING AT LEAST ONE QUESTION FROM EACH SECTION. YOU CAN USE CALCULATORS. YOU CANT USE MOBILE PHONES AS CALCULATORS.

SECTION - A

01. Let H be the point in the plane of the triangle ABC such that BH is perpendicular to AC and CH is perpendicular to AB. With respect to a set of rectangular Cartesian axes in the plane of the triangle. A \equiv (4,3). The equations of BH and CH are x + y + 1 = 0 and 5x + 3y - 5 = 0 respectively.

Find the equations of the sides AB and AC. Find the coordinates of the points B, C and H. Verify that AH and BC are perpendicular. Find the area of the triangle ABC.

Through each vertex of the triangle ABC a straight line paralled to the opposite side is drawn and these three lines form the triangle A'B'C'. by using geometrical methods (without finding the coordinates of the points). Show that H is the equidistant from A'B' and C'.

Deduce that the area of the triangle A'B'C'.

O2. S is the circle passing through the points $A \equiv (8,0)$, $B \equiv (0,6)$ and $C \equiv (7,7)$. Find the equation of S. Show that S passes through the point P (8,6). If the tangents at B and P meet at the point Q. Find the coordinates of Q; Prove that $PQ = \frac{20}{3}$. Find the locus of the centres of the circles which touch the circle S externally and also the straight line x + 3 = 0.

- O3. Find the equation of the normal to the parabola $y^2 = 4ax$ at the point P (at²,2at). The normal at the point P meets the x axis at G and the mid point of PG is N.
 - i. Find the coordinates of the points G and N.
 - ii. Find the locus of the point N as P varies on the parabola.
 - iii. Given that $S \equiv (a,0)$, then show that PG is perpendicular to SN.
 - iv. If the triangle SPG is equilateral find the coordinates of the point P.
- 04. Let $P_1 = (aCos\alpha, bSin\alpha)$ and $P_2 = (aCos β, bSin β)$ be two distinct points on the ellipse $S = \frac{x^2}{a^2} + \frac{y^2}{b^2} 1 = 0$. Show that the equation of the chord P_1P_2 is $\frac{x}{a}Cos(\frac{\alpha + \beta}{2}) + \frac{y}{b}sin(\frac{\alpha + \beta}{2}) = Cos(\frac{\alpha + \beta}{2})$ Write down the equation of the tangent to the ellipse s = 0 at the point P = (aCos θ, bsinθ) Let N be the foot of the perpendicular from the centre of the ellipse S = 0 on the tangent at P. Find the coordinate of the mid point of ON. Hence show that the locus of the mid point of ON as P varies on the ellipse is $4(x^2+y^2)^2 = a^2x^2+b^2y^2$.
- Prove that if $16p^2 9q^2 = 1$, then the straight line px + qy = 1, touches the hyperbola $S \equiv \frac{x^2}{4^2} \frac{y^2}{3^2} 1 = 0$. The asymptotes of the hyperbola, meet the circle $x^2 + y^2 2ky 25 = 0$ at the points $P_1 \equiv (x_1, y_1)$ and $P_2 \equiv (x_2, y_2)$. Where k is a constant. Given that P_1 is in the 1^{st} quadrant and P_2 is in the 4^{th} quadrant.

Show that
$$\frac{y_1}{3} = \lambda + \sqrt{1 + \lambda^2}$$
 and $\frac{x_2}{4} = -\lambda + \sqrt{1 + \lambda^2}$

Where
$$\lambda = \frac{3k}{25}$$
;

Hence show that the line P_1P_2 touches the hyperbola S=0 for all values of k.

06. (a).
$$f(\theta) = \frac{1}{4Sin\theta - 3Cos\theta + 6}$$
, for $\theta \in \Re$

i. Show that
$$\frac{1}{11} \le f(\theta) \le 1$$
 for all $\theta \in \Re$

ii. Solve the equation $f(\theta) = 1$ giving all the solutions between O° and 360° .

- Show that if the equation $\tan^{-1}(x+a) \tan^{-1}(x+b) = \frac{\pi}{4}$ (where a and b are constants) has real solutions for x, then $(a-b+2)^2 \ge 8$. Hence solve the equation $\tan^{-1}(x+1) \tan^{-1}(x-1) = \frac{\pi}{4}$.
- (c) By using the sine rule for a triangle, with usual notation show that if $a = c + \lambda b$ where $\lambda \in \Re$, then $\lambda Cos \frac{B}{2} = Cos \left(C + \frac{B}{2} \right)$.

SECTION - B

07. State De Moivre's Theorem,

By assuming $(\cos \theta + j \sin \theta)^n = \cos n\theta + j \sin n\theta$ for $n \in \mathbb{Z}^+$; Prove the result for $n \in \mathbb{Z}^-$.

i. Show that for positive integral n,

$$(Sin \ \theta + j \ Cos \ \theta)^n = Cos \ n\left(\frac{\pi}{2} - \theta\right) + j \ Sin \ n\left(\frac{\pi}{2} - \theta\right).$$

Deduce the values $(1+j)^8$ and $(1-j)^8$.

ii. Show that $\left\{ \frac{1 + Sin\theta + jCos\theta}{1 + Sin\theta - jCos\theta} \right\}^8 = Cos(4\pi - 8\theta) + jSin(4\pi - 8\theta)$

Deduce that
$$\left[\frac{1+j}{1-j}\right]^8 = 1$$

08. (a) Using corresponding loci in the Argand diagram depict the points representing the complex numbers z satisfying both equations

Arg (z-1) – Arg (z-i) = $\frac{\pi}{4}$ and |z|=1; Where Arg refers to the principal value lying between - π and π .

(b) The position vectors of the points A, B and C are respectively

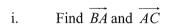
$$\overrightarrow{OA} = \sqrt{3} \mathbf{i} + \mathbf{j}$$

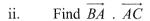
 $\overrightarrow{OB} = \sqrt{2} \mathbf{i} - \sqrt{2} \mathbf{j}$ and $\overrightarrow{OC} = -\mathbf{i} + \sqrt{3} \mathbf{j}$

Find the magnitudes of the vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} . Hence show that the points A, B, C are on a circle, and find its centre and the radius. Find the position vector of the point D, such that ABDC is a parallelogram.

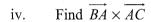
N

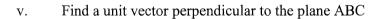
09. Let the position vectors of the points A, B and C with respect to an origin O be $3\mathbf{i}+3\mathbf{j}-\mathbf{k}$, $4\mathbf{i}+2\mathbf{j}-3\mathbf{k}$ and $6\mathbf{i}+10\mathbf{j}-7\mathbf{k}$ respectively.





iii. Find the angle $B\hat{A}C$





vi. Find the perpendicular distance from C to the line AB

vii. DN is the line such that DN is perpendicular to the plane ABC and $\overrightarrow{OD} = \alpha \mathbf{i} + \mathbf{j} + \mathbf{k}$. Let $\overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Find the expression for $\overrightarrow{DP} \cdot (\overrightarrow{BA} \times \overrightarrow{AC})$ and hence show that $\overrightarrow{OP} \cdot (\overrightarrow{BA} \times \overrightarrow{AC}) = \overrightarrow{OD} \cdot \overrightarrow{BA} \times \overrightarrow{AC}$ and $2x+z=2\alpha+1$.

SECTION - C

- i. A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife's selection is 2/7. What is the probability that
 - a) only one of them will be selected
 - b) both of them will be selected.
 - c) non of them will be selected
 - d) At least one of them will be selected.

- ii. A regular octahedron which has its triangular faces numbered from 1 to 8 is to be used as a die. The score for a throw is the number on the face that comes uppermost when the die is thrown on a horizontal table. If two such dice are thrown, find the probability that
 - a) the total score on the two dice is at least 14
 - b) the difference between the scores is 02.

Two players A and B throw both dice in turns (with A starting), and the first player to obtain a difference of 2 between the scores on the dice wins the game.

Find the probability that

- c) A wins at his first throw
- d) B wins at his first throw
- e) A wins at his third throw
- 11. i. The following table givens a grouped frequency distribution of the lifetimes of a random sample for 1600 electric bulbs taken from the out put of a particular factory.

Lifetimes in	No of
Hours	Bulbs
1000 - 1500	120
1500 - 2000	220
2000 - 2500	280
2500 - 3000	420
3000 - 3500	300
3500 - 4000	180
4000 - 4500	80

Estimate the mode, median, mean and standard deviation of the lifetime.

- ii. The mean and variance of 05 observations are 4.4 and 6.64 respectively. If three of the five observations are 2,1 and 6. Find the other two observations.
- 12. Please answer any two parts from (a), (b) and (c).
 - (a) A particle P projected horizontally with speed u from the lowest point A of the smooth inside surface of a fixed hollow sphere of internal radius a and centre O. Find the expression for velocity V and normal reaction R of the particle a the point Q where $\hat{AOQ} = \theta$

- i. In the case when u^2 =ga show that P does not leave the surface of the sphere. Show also that when P has moved halfway along its path from A towards the point at which it first comes to rest, its speed is $\sqrt{ga(\sqrt{3}-1)}$.
- ii. Find u^2 in terms of g and a in the case when P leaves the surface at a height $\frac{3a}{2}$ above A, and in terms of a and g, the speed of P as it leaves the surface.
- (b) One end of a light elastic string of natural length 2a and modulus 4mg is attached to a fixed point 'A' of a smooth horizontal table. A particle of mass m is attached to the other end of the string. The particle is released from rest from a point 'C' of the table where AC=3a. Show that the particles reaches the point 'C' again after a time of $(4+\pi)\sqrt{2a/g}$.
- (c) A string passes round the rim of a wheel of radius a fixed with its axis horizontal and carries masses m, and m_2 at its ends. Assuming that the friction at the axis of the wheel is negligible, show that, it $m_2 > m_1$ the acceleration of the masses is $\frac{(m_2 m_1)g}{m_2 + m_1 + \frac{I}{a^2}}$. Where I is the moment of

inertia of the wheel about its axis.

- Copyrights reserved -