

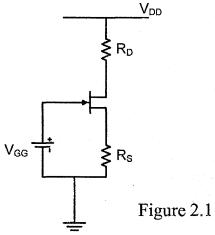
The Open University of Sri Lanka
Department of Electrical and Computer Engineering
Final Examination - 2008
ECX3230 – Electronics

229

Closed Book Test

Date: 28.03.2009 Time: 14.00-17.00

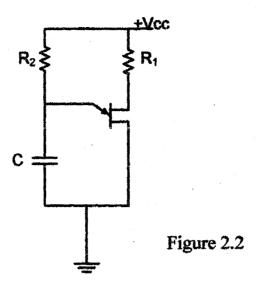
Answer any FIVE Questions


1 A npn germanium transistor is used in an amplifier circuit, and its characteristics can be considered linear between the limits as shown in the table below.

$I_b(uA)$	60		40		20	
V _{CE} (V)	1.	10	1	10	1	10
I_{C} (mA)	2.7	3.2	1.8	2.1	0.9	1.1

- a) A $2K\Omega$ resistor is connected between the collector and the positive terminal of a 9V dc supply. The emitter is connected directly to the negative terminal.
 - i) Draw the circuit diagram using a fixed bias scheme.
 - ii) Sketch the output characteristics and draw the dc load line.
 - iii) Determine the quiescent collector emitter voltage and the collector current, if the quiescent base current is $40\mu A$.
- b) For a sinusoidal signal, the base current varies with a peak alternating component of $20\mu A$.
 - i) Determine the amplitude of the alternating component of the collector current.
 - ii) Determine the current gain of the transistor.

2


- a) State an application of a Unipolar transistor and a Uni junction transistor.
- b) The circuit shown in the Figure 2.1 is using a JFET having $I_{DSS} = 16 \text{mA}$ and $V_p = -4 \text{V}$.

If the $V_{DD} = 18V$, $V_{GG} = 0V$ and $R_S = R_D = 500\Omega$, determine

- i) Gate Source Voltage
- ii) Drain current

- iii) Drain Source Voltage
- iv) Region of operation of the JFET
- c) The circuit shown in Figure 2.2 is an application of a UJT.

- i) Draw the equivalent circuit.
- ii) Briefly explain the operation of this circuit.
- a) The circuit given in figure 3.1 is a stabilized dc power supply using a full wave bridge rectifier.

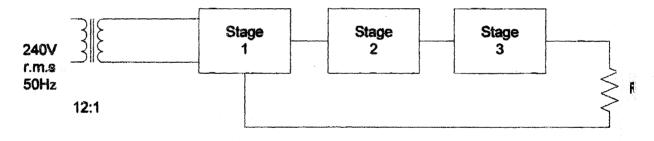
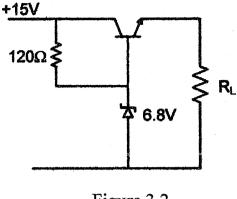



Figure 3.1

- i) Write the function of each block in the diagram and draw the relevant circuit for each block.
- ii) Calculate the ripple factor of a filter circuit which can be used with Figure 3.1 for the following cases and comment on the results.
 - (1) For a single capacitor of $1000\mu F$.
 - (2) For an inductor of 10mH followed by a Capacitor of 1000μF.

3

b) The circuit of a voltage stabilizer is shown in figure 3.2. A Germanium Transistor with a current gain of 50 is used in this circuit. Maximum power dissipation and the minimum current of the zener diode are 250mW and 5mA respectively.

- Figure 3.2
- i) Calculate the stabilized output voltage.
- ii) Find usable current range of the stabilizer.
- 4 An amplifier using a fixed biased technique is given in figure 4. For the transistor, h_{fe} and h_{ie} are 100 and $1K\Omega$ respectively.
 - a) Identify the configuration of the transistor?
 - b) Draw the hybrid parameter equivalent circuits for the following cases.
 - i) With C_E.
 - ii) Without C_E.
 - c) Calculate the mid band gain for the cases given in (b).
 - d) Comment on the results gained in (c).

a) Obtain the logic function of the circuit shown in figure 5. Tabulate the truth table. Give a single gate which will represent the logic function.

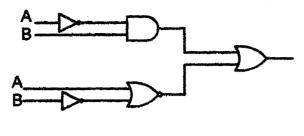
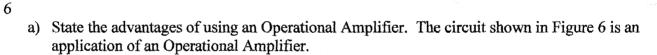
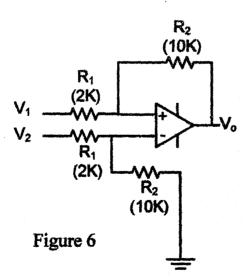




Figure 5

- b) Prove the following identities
 - i) (P+Q)(Q+S)(P+R)(R+S) = QR+PS
 - ii) $PQ + P\overline{Q} + PQR = P$
- c) Simplify the following using Karnaugh map
 - i) $f(P,Q,R,S) = \sum_{i=0}^{\infty} (0,1,2,4,5,6)$
 - ii) $f(P,Q,R,S) = \sum (3,7,12,13,14,15)$
- d) Use minimum number of 2 input NOR gates to implement the logic function obtained in (c)-(i) above.

- i) Derive an expression for Vo.
- ii) Calculate the output voltage of the circuit for the following input voltages.
 - (a) $V_1 = 1.5$, $V_2 = 0.5$
 - (b) $V_1 = -2.5$, $V_2 = 0.5$
- iii) What is the function of this circuit?

a)

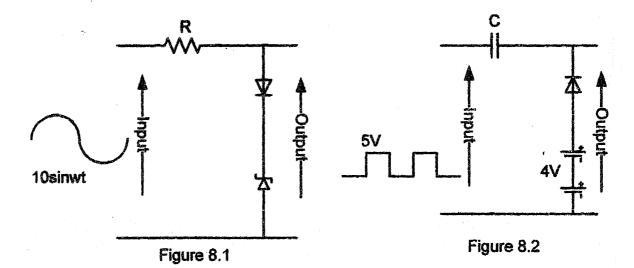
7

- i) State the difference between combinational logic circuits and sequential logic circuits.
- ii) Tabulate the output Q for all combinations of the input A, B, C of the following circuit.

Figure 7.1

Assume A, B, C can have only 0V (low) or 5V (high). Diodes are ideal and for the transistor, $V_{CE(Sat)}=0V$. According to your tabulation what is the logic function implemented by this circuit.

b) A multivibrator circuit is shown in Figure 7.2


- i) Tabulate the output Q for all combinations of A and B.
- ii) According to the tabulation of Q, what is the function of this multivibrator?

8

- a) A 100mH relay coil having a resistance of 10Ω is connected in series with a 50Ω resistance across a 12V battery. The relay operates at 20mA.
 - i) Derive an expression for the current /time relationship in the circuit.
 - ii) Calculate the time to operate the relay after switching the power.

b)

- i) What do you understand by a clipper and a clamper?
- ii) Sketch the output waveforms of the following circuits shown in Figure 8.1 and Figure 8.2. Also state whether it is a clamper or a clipper.

