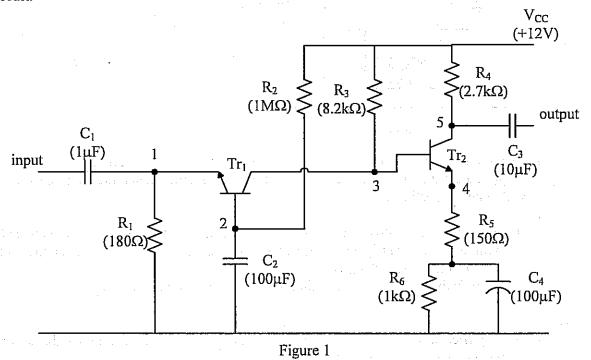


The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination -2011


ECX4230 - Fault Diagnosis in Electronic Circuits

Date:17.03.2012

Time: 1400 -1700 hrs

Answer any five questions.

1) A two stage amplifier is shown in figure 1. Test points are marked as 1,2,3,4 and 5 in the circuit.

- a) Current gain of Tr₁ and Tr₂ transistors are 100 and 75 respectively, calculate the test point voltages at no signal. Do not assume for maximum output swing.
- b) Calculate the amplitude of the signal at the output, if the voltage of the signal at test point 3 is 0.23V peak to peak. (Assume the capacitors offers negligible reactance at the signal frequency)

c) Identify the faulty component/s with fault type giving reasons.

Case	T.P 1	T.P 2	T.P 3	T.P 4	T.P 5	output
Α	0.2	0.8	2.82	. 0	12.00	No output
В	0.2	0.8	2.7	2.19	11.46	Positive clipped
С	0.2	0.8	1.036	0.436	0.630	No output

2) Figure 2 shows a circuit employing two thyristors with a trigger module. The trigger module triggers the two thyristors sequentially.

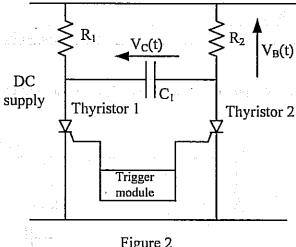


Figure 2

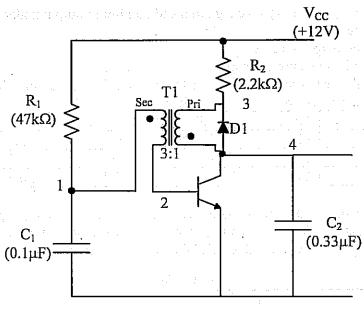
- a) Explain the operation of this circuit and give one possible application.
- b) Suggest a circuit which can be used as the trigger module, sketch the complete circuit with your suggestions.

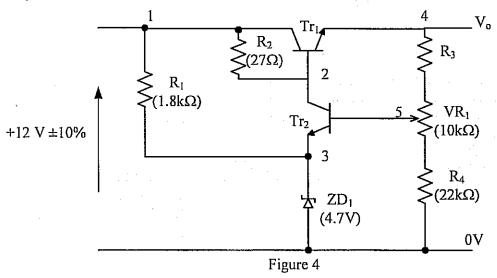
c)

- i) If two identical bulbs B₁ and B₂ are used o replace of R₁ and R₂ respectively, and if both thyristors are triggered sequentially at same trigger voltages, sketch the voltage waveforms $V_C(t)$ and $V_B(t)$.
- ii) Identify the fault/s with reasoning, if the B₁ bulb is on and B₂ is off.

3)

- a) An amplifier of open loop A₀ is supplied with positive feedback. If the feedback ratio is β, find an expression for the overall gain.
 - i) What will happen when $\beta A_0 = 1$?
- b) The circuit shown in figure 3 is a blocking oscillator. Test points are marked as 1,2,3 and 4 in the circuit.




Figure 3

- i) Explain the operation and, sketch the waveforms at the output.
- ii) What is the function of D₁?

iii) State the faulty component/s and the fault type with reasons for the following.

	<u> </u>				<u> </u>
Fault	T.P 1	T.P 2	T.P 3	T.P 4	Symptom
Α	0	0	12	12	Oscillator fails
В	0.7	0.7	0.1	0.1	Oscillator fails
С	9.7	0	12	12	Oscillator fails

4) A DC regulator circuit is shown in figure 4. The Tr₂ has a high current gain and the Tr₁ has following specifications. Test points are marked as 1,2,3,4 and 5 in the circuit. Current gain – 25, Minimum voltage across collector and emitter – 1.5V, Maximum power dissipation - 3w.

- a) Find a suitable value for R₃ resistor to give a guaranteed maximum output under the specified input conditions.
- b) Calculate the range of the output voltage.
- c) What is the maximum safe load current ensuring safe operation?

d) Following table shows the test point voltage under faulty condition. Determine the faulty component/s giving reasons. Assume VR₁ is set to its maximum.

Case	T.P 1	T.P 2	T.P 3	T.P 4	T.P 5
A	12	11	4.7	0	5.3
В	12	0	4.7	0	5.3
С	12	6.8	0	5.4	0.6

5) A transistor amplifier is shown in figure 5. The Drain current of the transistor Tr_1 is given by $I_D = 0.2(V_{GS} - V_P)$, where I_D is in mA, V_{GS} in Volts and $V_P = -4V$. Current gain of the Tr_2 transistor is very high. Test points are marked as 1,2,3,4 and 5 in the circuit.

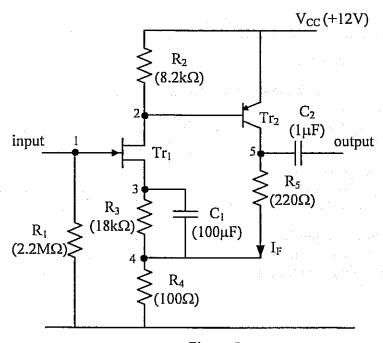


Figure 5

- a) Calculate the current I_F and then find the voltages at Test points when no signal is applied. Do not assume maximum swing at the output.
- b) What is the phase relationship between input and the output?
- c) Calculate the test point voltages.
- d) State the faulty component/s and the fault type with reasons for the following

Fault	T.P 1	T.P 2	T.P 3	T.P 4	T.P 5	Symptom
Α .	0	11.9	3.3	2	0	No output
В	0	11.4	3	0.6	7.4	Very low gain
С	0	11.4	0	0	0.1	No output

6) Consider the circuit shown in figure 6. A narrow width pulse train of 250 Hz frequency and +2V height is applied to the input. Test points are marked as 1,2,3 and 4 in the circuit.

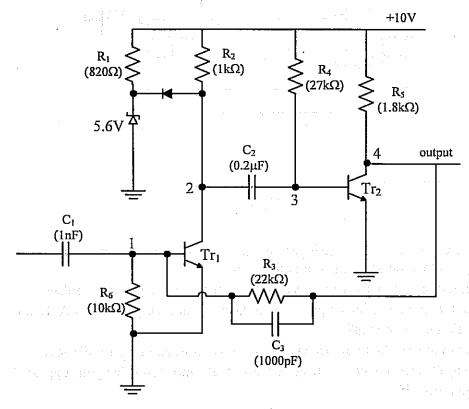
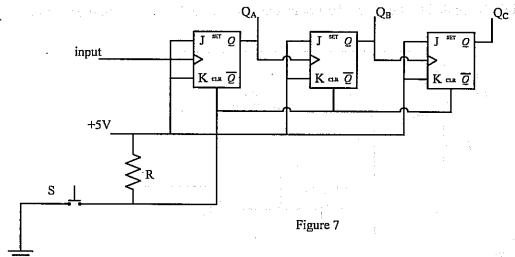



Figure 6

- a) Draw the waveforms at each test point to a common time scale with the input
- b) Calculate the parameters of the output waveform.
- c) Calculate the voltages at test points when no signal is applied.
- d) The output is not available under the following fault conditions. Find the faulty component/s and the fault type giving reasons for the following

Fault	T.P 1	T.P 2	T.P 3	T.P 4
A	0.2	6.2::::	0.6	0.2
В	0.2	0.6	0.6	0.2
С	0.6	0.2	0.6	10

7) Consider the logic circuit shown in Figure-Q7.

The JK flip-flops are +ve edge trigger (triggers on the +ve edge of the clock) type. After pressing S, clock pulses are given to the input.

- a) Draw the timing diagram to show QA, QB, and QC for the first eight clock pulses.
- b) Hence tabulate the number of clock pulses with the relevant binary values of A, B, and C.
- c) Write the function of the circuit?
- d) What are the components that you need to display this information in a SSD(Seven Segment Display)? Draw the complete circuit with the components that you suggested
- e) Explain the operation, if
 - i) R is open,
 - ii) Second JK flip flop is faulty

8)

a)

- i) What are the main sections of a tuner in a TV receiver? Explain the function of each section.
- ii) In a defective TV receiver only the sound signal is received. Explain what sections are likely to be faulty and how you are going to identify the faulty section.

b)

- i) Compare the R.F and A.F amplifiers in radio receiver.
- ii) Draw the block diagram of a superheterodyne receiver.
- iii) A defective radio receiver gives a distorted audio. If an oscilloscope is given to you explain how you find the faulty section.