[10.0]

The Open University of Sri Lanka Diploma in Technology ECX4234-Electrical Installation Final Examination 2012/2013

Fina	Examination 2012/2013
Date	28/07/2013 Time:9.30-12.30 hrs.
	paper contains 8 questions in 4 pages. Pages 5 to 11 contain tables and appendices
requ	red for answering the questions. Answer only five (5) questions.
1 0	State what is mount by the term "Electrical Installation"?
	State what is meant by the term "Electrical Installation"? [2.5] What would be the maximum current carrying capacity of 1/1.38 (1.5 mm²) p.v.c. cable
U	(in conduit) used in domestic wiring? [2.5]
c`	
•	
ď	In the equation $S = \frac{\sqrt{I^2 t}}{k}$ what is "S" and give its units? [2.5]
e)	What would be the value of constant "k" given in 1.d for copper cables? [2.5]
f)	
	equipments operates? [2.5]
g	
	should operate? [2.5]
h	State the maximum percentage voltage drop you would allow in a circuit from its distribution board in a domestic electrical Installation as per the IEE regulations? [2.5]
2. a	You are given a conduit occupied by two 1/1.13 wires running in a circuit. For how long
•	the wire can run if the maximum current allowed is 5 Amperes. [2.5]
b	How many 1/1.13 single core cables that can be occupied in a 16 mm p.v.c. conduit pipe
	in a straight-run (with out bends) domestic wiring? [2.5]
C	What is the permissible earth fault loop impedance value for a protection of fixed
	equipment operating at 240 V & protected by a 16 A Type C rcbo to BS EN 61009? [2.5]
d	
	[2.5]
e e	
f	
g	
h h	
**	installation? [2.5]
3 a	What would be the size of the cable and rating of mcb used in domestic ring circuits? [5.0]
•) If you do not have the grouping factor table published by the IEE regulation for domestic
U	wiring as a reference, what percentage of an area would you allow as a free space in
	domestic conduit wiring? [2.5]
C	- · · · · · · · · · · · · · · · · · · ·
d	, , , ,
	point located approximately about 85 m away from the generating point using XLPE
	multi-core non-armoured cable. Calculate the size of the cable for the above wiring if the

cable is laid on a cable tray (free air)? Assume that the allowable voltage drop is 3%

4. Answer the following questions with reference to the figure Q4a and figure Q4b shown below:

Figure Q4a Figure Q4b

a)	ii. iii. iv.	Name the equipment shown in figure Q4a Identify the assembly of components a-g Draw the characteristics curve of component c Draw the characteristics curve of component b From (iii) and (iv) deduce the equipment characteristics curve and performance	[3.5] [1.5] [1.0] [1.0] explain its [2.0]
b)	i.	Name the equipment shown in figure Q4b	[4.5]
	ii.	Identify the assembly of components 1-9	[1.5]
	iii.	State briefly under what condition the equipment operates	[2.0]
	iii.	How do you test this equipment after installing it in a domestic electrical in	istallation
		(with out using its own test button)	[3.0]

- 5. a) Give standard symbols for 10 electrical equipments used in domestic electrical installation works:
 - b) Draw the single line diagram for a fluorescent circuit (consisting of two tubes) to be installed in an industrial type of installation, showing the connection of all the associated equipments. What size of a capacitor you would normally use for such circuits? Describe the purpose of this capacitor. [10.0]
- 6. A 230 V single-phase circuit is run in two-core (with cpc) 70°C p.v.c insulated sheathed cable having copper conductors of 4.0 mm² for the live and 2.5 mm² for the protective conductors. If the length of the path is 40 m, earth fault loop impedance external to the installation is 1.2 Ω and the circuit is protected by a 30 mA rccb, check whether the circuit is satisfying the adiabatic equation as per IEE regulation #543-01-03 [10.0]

(Assume k=115 and recb to operate within 0.04 s at a residual current of 5 I_{An} Amps.)

Also calculate the maximum time the conductor can withstand as per the adiabatic equation, if one wish to introduce an internal time delay for the rccb. [10.0] 7. a) State the factors on which the capacity of a conduit to carry cables depends?

[5.0]

b) State the factors on which the capacity of a cable conductor depends?

[5.0]

- c) It is intended to run four, three and two single-core **p.v.c.** insulated similar cables with cross sections of 2.5 mm², 4 mm² and 6 mm² respectively in a conduit in an industrial electrical installation. The estimated length of the conduit run is about 5 meters and the run include 3 bends. Determine the minimum size of the conduit that can be used for this purpose? Also, estimate the minimum radius of the conduit bends to be used in the above installation.

 [10.0]
- 8. a) In order to determine the earth fault loop impedance of a "spur" on a ring circuit, strictly it is necessary to estimate the fractional distance of that spur from the origin of the circuit. If the fraction is denoted by 'y' as shown in figure Q8, prove that the earth fault loop impedance at the remote end of spur is given by:

$$Z_S = |Z_E + y(1-y)(R_{1T} + R_{2T}) + R_{1S} + R_{2S}|$$
 Ohm [7.5]

Where:

 R_{1T} = Total resistance of the phase conductor of the ring circuit in Ohm.

 R_{2T} = Total resistance of the protective conductor of the ring circuit in Ohm.

 R_{1S} = Resistance of the phase conductor of the spur in Ohm.

 R_{2S} = Resistance of the protective conductor of the spur in Ohm.

Z_E= Earth fault loop impedance external to the installation in Ohm.

Deduce that under the worst case scenario, the above computed value would be:

$$Z_S = \left[Z_E + 0.25(R_{1T} + R_{2T}) + R_{1S} + R_{2S} \right]$$
 Ohm [2.5]

Figure Q8

- b) A single-phase ring circuit is run in 2.5 mm² 70 0 C p.v.c-insulated and sheathed flat cable to BS 6004 with the protective conductor being 1.5 mm². Measured length of the ring circuit is about 80 m. A spur taken from the ring is run in the same cable and the length of the spur being 12 m. If it is estimated that the spur is taken from the ring 30 m from the origin and $Z_{\rm E} = 0.35$, what is the earth fault loop impedance for the spur? [5.0]
- c) Explain the variation of the calculated value in 8.b if the point where the spur is taken from the ring circuit varies around the circuit? To get a pessimistically high result for you to be on the safe side, what would be the highest value of the earth fault loop impedance you would estimate for the spur in above ring circuit? [5.0]

200 Page 1

Page (5) of (11)

Multicore 90 °C thermosetting insulated cables, non armoured (COPPER CONDUCTORS) **TABLE 4E2A**

CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 $^{\circ}\mathrm{C}$ Conductor operating temperature: 90 $^{\circ}\mathrm{C}$

Method 11	ed cable tray) Method 13 air)	1 three- or	four-core cable*, three-	phase a.c.	6	(A)		18	23	32	42	54	75	100	127	158	192	246	298	346	399	456	538	621	741
Reference Method 11	(on a perforated caole tray) or Reference Method 13 (free air)	1 two-core	cable*, single-	a.c. or d.c.	00	(A)	- ·.	21	56	36	49	63	98	115	149	185	225	289	352	410	473	542	641	741	865
Method 1	direct)	1 three- or	four-core cable*, three-	phase a.c.	1	(¥)		17	22	30	40	52	7.1	96	119	147	179	229	278	322	371	424	200	576	199
Reference Method 1	(chpped direct)	1 two-core	cable*, single- phase	a.c. or d.c.	9) (S	<u>-</u>	19	24	33	45	58	08	107	138	171	209	269	328	382	441	206	599	693	803
Method 3	in conduit or ceiling, inking)	1 three- or	four-core	phase a.c.	V) (§		15	. 19.5	26	35	44	09	08	105	128	154	194	233	268	300	340	398	455	536
Reference Method 3	(enclosed in conduit on a wall or ceiling, or in trunking)	1 two-core	cable*, single-	a.c. or d.c.	٧	• (4)		17	77	30	40	51	69	91	119	146	175	221	265	305	334	384	459	532	625
Method 4	d in an wall, etc.)	1 three- or	four-core	phase a.c.	"	(A)	7	13	16.5	. 22	30	38	51	89	68	109	130	164	197	727	259	295	346	396	ı
Reference Method 4	(enclosed in an insulated wall, etc.)	1 two-core	cable*, single-	a.c. or d.c.	·	3 (8)	(c)	14.5	18.5	25	33	42	57	192	66	121	145	183	220	253	290	329	386	442	,
Conductor	cross- sectional	7				, mm ²)	(,,,,,,,		1.5	2.5	4	9	10	7	25	35	20	70	95	120	150	185	240	300	400

- 1. Where the conductor is to be protected by a semi-enclosed fuse to BS 3036, see item 6.2 of the preface to this appendix.
- Where a conductor operates at a temperature exceeding 70 °C it shall be ascertained that the equipment connected to the conductor is suitable operating temperature (see Regulation 512-02). conductor the તં
 - For cables in rigid pvc conduit the values stated in Table 4D2 are applicable (see Regulation 521-05). * With or without a protective conductor. ઌ૽ 4.
- connected to equipment or accessories designed to operate at a temperature not exceeding 70 °C, the current ratings given in the equivalent table for 70 °C thermoplastic (pvc) insulated cables (Table 4D2A) shall be used Where cables in this table (see also Regulation 523-01-01). 'n
- Values for larger sizes relate to shaped conductors and may safely be Circular conductors are assumed for sizes up to and including 16 mm². Values for larger sizes relate to applied to circular conductors. 6

TABLE 4E2B

	1											•		-						
ble,									2	1.65	1.15	0.87	09.0	0.45	0.37	0.30	0.26	0.21	0.185	0.165
or four-core cal ree-phase a.c.	4	(mV/A/m)	40	27	9 10	6.8	4.0	2.5	.₩ ·	0.140	0.135	0.135	0.130	0.130	0.130	0.125	0.125	0.125	0.120	0.120
Three-									L	1.60	1.15	0.86	0.59	0.43	0.34	0.28	0.22	0.175	0.140	0.115
									Z	1.90	1.35	0.1	69:0	0.52	0.42	0.35	0.29	0.24	0.21	0.190
'wo-core cable, ingle-phase a.c.	က	(mV/A/m)	46	31	P 27	7.9	4.7	2.9	×	0.160	0.155	0.155	0.150	0.150	0.145	0.145	0.145	0.140	0.140	0.140
E s			•	•					L	1.85	1.35	0.99	0.67	0.50	0.40	0.32	0.26	0.200	0.160	0.130
Two-core cable, d.c.	7	(mV/A/m)	46	31	61 21	7.9	4.7	2.9		1.85	1.35	0.98	29.0	0.49	0.39	0.31	0.25	0.195	0.155	0.120
Conductor cross-sectional area		(mm^2)		1.5	2.5 C. 4	. 9	10	16		25	35	50	70	95	120	150	185	240	300	400
		Two-core Two-core cable, cable, d.c. single-phase a.c.	Two-core Two-core cable, cable, d.c. single-phase a.c. 2 3 (mV/A/m) (mV/A/m)	Two-core Two-core cable, cable, d.c. single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46	Two-core Two-core cable, cable, d.c. single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46 31 31 31 31	Two-core Two-core cable, cable, d.c. single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46 31 31 19 ' 19 12 ' 12	Two-core Two-core cable, cable, d.c. single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46 31 31 19 ' 19 12 ' 12 7.9 7.9	Two-core Two-core cable, single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46 31 31 19 12 7.9 7.9 4.7 4.7	Two-core Two-core cable, single-phase a.c. 2 3 (mV/A/m) (mV/A/m) 46 46 31 31 19 19 12 12 7.9 4.7 4.7 4.7 2.9 2.9	Two-core cable, d.c. Two-core cable, phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 12 16 12 12 10 7.9 7.9 6.8 4.7 4.7 4.0 2.9 2.9 2.5 2.5 r x	Two-core cable, d.c. Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 12 16 12 12 6.8 4.7 4.7 4.0 4.7 4.7 4.0 2.9 2.9 1.60 0.140 1.85 0.160 1.90 1.60 0.140	Two-core cable, d.c. Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 19 16 12 12 6.8 4.7 4.7 4.0 7.9 7.9 6.8 4.7 4.7 4.0 2.9 2.9 2.5 1.85 1.85 0.160 1.90 1.60 0.140 1.35 1.35 1.15 0.135	Two-core cable, cable, d.c. Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 19 16 12 12 6.8 7.9 7.9 6.8 4.7 4.7 4.0 7.9 4.7 4.0 4.7 4.7 4.0 2.9 2.9 5.5 1.85 1.85 0.160 1.90 1.60 0.140 1.35 1.35 1.35 1.15 0.135 0.98 0.99 0.155 1.00 0.86 0.135	Two-core cable, cable, d.c. Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 12 16 12 7.9 6.8 4.7 4.7 4.0 4.7 4.7 4.0 2.9 7.9 6.8 4.7 4.7 4.0 2.9 7.9 6.8 4.7 4.7 4.0 2.9 7.9 6.8 4.7 4.7 4.0 2.9 7.9 6.8 1.85 0.160 1.90 1.60 0.140 1.35 1.35 1.15 0.135 0.09 0.0155 1.00 0.69 0.130 0.67 0.67 0.69 0.69 0.130	Two-core cable, cable, d.c. Two-core cable, single-phase a.c. Three-or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 12 16 12 12 6.8 4.7 4.7 4.0 4.7 4.7 4.0 2.9 2.9 2.5 1.85 0.160 1.90 1.60 0.140 1.85 1.85 0.160 1.90 0.140 1.35 1.35 1.35 0.135 0.99 0.155 1.00 0.86 0.136 0.49 0.50 0.150 0.69 0.130 0.49 0.50 0.150 0.43 0.130	Two-core Two-core cable, single-phase a.c. Two-core cable, three-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 19 16 12 7.9 6.8 4.7 4.7 4.0 4.7 4.7 4.0 2.9 7.9 6.8 4.7 4.7 4.0 4.7 4.7 4.0 4.7 4.7 4.0 5.9 7.9 6.8 4.7 4.0 2.5 2.9 1.8 0.160 1.90 1.60 0.140 1.85 1.85 0.155 1.35 0.135 0.135 0.98 0.99 0.155 1.0 0.69 0.59 0.130 0.49 0.50 0.150 0.69 0.59 0.130 0.39 0.40	Two-core Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 19 16 12 7.9 6.8 4.7 4.7 4.0 7.9 7.9 6.8 4.7 4.7 4.0 7.9 7.9 6.8 4.7 4.7 4.0 7.9 7.9 6.8 4.7 4.7 4.0 2.9 7.9 6.8 4.7 4.7 4.0 2.9 7.9 6.8 4.7 2.9 7.5 5.9 1.35 1.15 0.136 0.98 0.99 0.155 1.0 0.69 0.59 0.130 0.49 0.40 0.145 0.24 0.130	Two-core Two-core cable, single-phase a.c. Three- or four-core cable, three-phase a.c. Three- or four-core cable, three-phase a.c. 2 3 4 (mV/A/m) (mV/A/m) (mV/A/m) 46 46 40 31 31 27 19 19 16 7.9 4.7 4.0 7.9 4.0 2.5 2.9 2.9 1.60 0.140 1.85 0.160 1.90 1.60 0.140 1.35 1.35 0.155 1.35 0.135 0.98 0.99 0.155 1.00 0.86 0.130 0.49 0.50 0.150 0.69 0.59 0.130 0.25 0.49 0.50 0.145 0.22 0.130 0.25 0.25 0.28 0.125 0.25 0.22 0.125 0.125	Two-core cable, single-phase a.c. Two-core cable, cable, d.c. Single-phase a.c. Two-core cable, cable, d.c. Single-phase a.c. Two-core cable, d.c. Two-core cable, three-phase a.c. Two-core cable, d.c. Two-core c	Two-core cable, cable, cable, date, cable, date, date, cable, date,

TABLE 8D $\label{eq:table_eq} Values \ of \ (R_1 + R_2) \ per \ metre \ for \ p.v.c.-insulated \ copper \ conductors$

Cross-sectio area, mm ²	nal	$(R_1 + R_2)$
Phase conductor	Protective conductor	ohms/metre
1	1	0.055
1.5	1	0.046
	1.5	0.037
2.5	1	0.039
	1.5	0.030
	2.5	0.022
4	1.5	0.026
	2.5	0.018
	4	0.014
6	2.5	0.016
	4	0.0116
· .	6	0.0092
10	4	0.0098
	6	0.0074
	10	0.0055
16	6	0.0064
	10	0.0045
	16	0.0035

APPENDIX 12

CABLE CAPACITIES OF CONDUIT AND TRUNKING

Introduction

This appendix describes a method which can be used to determine the size of conduit or trunking necessary to accommodate cables of the same size, or differing sizes, and provides a means of compliance with Regulation 529-7.

The method employs a 'unit system', each cable size being allocated a factor. The sum of all factors for the cables intended to be run in the same enclosure is compared against the factors given for conduit or trunking, as appropriate, in order to determine the size of the conduit or trunking necessary to accommodate those cables.

It has been found necessary, for conduit, to distinguish between -

- 1. straight runs not exceeding 3 metres in length, and
- 2. straight runs exceeding 3 metres, or runs of any length incorporating bends or sets.

The term 'bend' signifies a British Standard 90° bend, and one double set is equivalent to one bend.

For the case 1, each conduit size is represented by only one factor. For the case 2, each conduit size has a variable factor which is dependent on the length of run and the number of bends or sets. For a particular size of cable the factor allocated to it for case 1 is not the same as for case 2.

For trunking each size of cable has been allocated a factor, as has been each size of trunking.

Because of certain aspects, such as the assessment of reasonable care of pulling-in, acceptable utilisation of the space available and the dimensional tolerances of cables, conduit and trunking, any method of standardizing the cable capacities of such enclosures can only give guidance on the number of cables which can be accommodated. Thus the sizes of conduit or trunking determined by the method given in this appendix are those which can be reasonably expected to accommodate the desired number of cables in a particular run using an acceptable pulling force and with the minimum probability of damage to cable insulation.

Only mechanical considerations have been taken into account in determining the factors given in the following tables. As the number of circuits in a conduit or trunking increases, the current-carrying capacities of the cables must be reduced according to the appropriate grouping factors in Appendix 9. It may therefore be more attractive economically to divide the circuits concerned between two or more enclosures.

This appendix deals with the following four cases:

- Single-core p.v.c.-insulated cables in straight runs of conduit not exceeding 3m in length.
- Single-core p.v.c.-insulated cables in straight runs of conduit exceeding 3m in length, or in runs of any length incorporating bends or sets.
- Single-core p.v.c.-insulated cables in trunking.
- Other sizes and types of cable in trunking.

For other cables and/or conduits not covered by the tables, advice on the number of cables which can be accommodated should be obtained from the manufacturers.

Single-core p.v.c.-insulated cables in straight runs of conduit not exceeding 3m in length.

For each cable it is intended to use, obtain the appropriate factor from Table 12A.

Add all the cable factors so obtained and compare with the conduit factors given in Table 12B.

The conduit size which will satisfactorily accommodate the cables is that size having a factor equal to or exceeding the sum of the cable factors.

TABLE 12A

Cable factors for short straight runs

Conductor Type crossof sectional mm^2 conductor area Factor 1 22 Solid 1.5 27 2.5 39 1.5 31 2.5 43 Stranded 4 58 6 88 10 146

TABLE 12B

Conduit factors for short straight runs

Conduit dia mm	Factor
16	290
20	460

800

1400

25

32

Single-core p.v.c.-insulated cables in straight runs of conduit exceeding 3m in length or in runs of any length incorporating bends or sets.

For each cable it is intended to use, obtain the appropriate factor from Table 12C.

Add all the cable factors so obtained and compare with the conduit factors given in Table 12D, taking into account the length of run it is intended to use and the number of bends and sets in that run.

The conduit size which will satisfactorily accommodate the cables is that size having a factor equal to or exceeding the sum of the cable factors.

TABLE 12C

Cable factors for long straight runs, or runs incorporating bends

Type of conductor	Conductor cross-sectional area mm²	Factor
Solid	1	16
or stranded	1.5	22
	2.5	30
	4	43
	6	58
<u></u>	10	105

TABLE 12D

Conduit factors for runs incorporating bends

	Conduit diameter, mm																			
Length	16	20	25	32	16	20	25	-32	16	20	25	32	16	20	25	32	16	20	25	32
of run n	,	St	raight	i		One	bene	1		Two	beno	is		Thre	e ben	ds		Four	bend	s
1					188	303	543	947	177	286	514	900	158	256	463	818	130	213	388	692
1.5	Cov	vered			182	294	528	923	167	270	487	857	143	233 [.]	422	750	111	182	333	600
2	by				177	286	514	900	158 [,]	256	463	818	130	213	388	692	97	159	292	529
2.5	Tab	les 1	2A		171	278	500	878	150	244	442	783	120	196	358	643	86	141	260	474
3	and	12B			167	270	487	857	143	233	422	750	111	182	333	600				
3.5	179	290	521	911	162	263	475	837	136	222	404	720	103	169	311	563				170-
4	177	286	514	900	158.	256	463	818	130	213	388	692	97.	159.	292	529				
4.5	174	282	507	889	154	250	452	800	125	204	373	667	91	149	275	500		,		
5	171	278	500	878	150	244	442	783	120	196	358	643	86	141	260	474				
.6	167	270	487	857	143	233	422	750	111	182	333	600								
7	162	263	475	837	136	222	404	720	103	169	311	563								
8	158	256	463	818	130	213	388	692	97	159	292	529								
9	154	250	452	800	125	204	373	667	91	149	275	500								
10	150	244	442	783	120	196	358	643	86	141	260	474								