THE OPEN UNIVERSITY OF SRI LANKA
B.Sc/B.Ed Degree Programme, Continuing Education Programme
APPLIED MATHEMATICS - LEVEL 05
AMU3187/AME 5187 – MATHEMATICAL METHODS II
FINAL EXAMINATION 2006/2007

DURATION: TWO AND HALF-HOURS

DATE: 21 - 11 - 2006

ıe

11

h

TIME: 1.30pm - 4.00pm

ANSWER FOUR QUESTIONS ONLY.

1. (i) Let f(x) be a function defined in the interval $-\pi < x < \pi$. The Fourier series of f(x) is given by

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \text{ where}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ dx, a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx \text{ and } b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$$

Show that
$$\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$

- (ii) Let $f(x) = \cos x$, $0 < x < \pi$. Find the Fourier sine series of f(x).
- (iii) Using parts (i) and (ii) show that $\frac{\pi^2}{16} = \frac{2^2}{1^2 \cdot 3^2} + \frac{4^2}{3^2 \cdot 5^2} + \frac{6^2}{5^2 \cdot 7^2} + \cdots$
- 2. Consider the boundary value problem

$$\frac{d^2y}{dx^2} + \mu y = 0 \text{ subject to}$$

$$y(0) - y'(0) = 0 \text{ and}$$

$$y(\pi) - y'(\pi) = 0.$$

- (i) Show that this is a Sturm-Liouville problem.
- (ii) Find the eigenvalues and eigenfunctions of the problem.
- (iii) Verify that the eigen functions are mutually orthogonal.
- (iii) Obtain a set of functions ϕ , which are orthonormal in the interval $0 \le x \le \pi$.

3. (i) The Fourier series of a periodic function f(x), $-\pi < x < \pi$ with period 2π can be written as

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \text{ where}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ dx \,, \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx \ \text{and} \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$$

Show that if f(x) is an **odd function** the Fourier series reduces to

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx \text{ with } b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \ dx.$$

- (ii) Find the Fourier series of the function defined by $f(x) = \sin \alpha x$, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$. Here α is not an integer.
- (iii) Using part (ii) show that

$$\sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{\left[9(2n+1)^2 - 1\right]} = \frac{\pi}{18\sqrt{3}}$$

- 4. The second order differential equation $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + n(n+1)y = 0$ is known as the Legendre equation. Here n is a real number.
 - (i) Write down the above differential equation in Sturm-Liouville form.
 - (ii) Suppose that the above differential equation as a solution of the form $y(x) = \sum_{m=0}^{\infty} c_m x^m$. Then show that $c_{s+2} = -\frac{(n-s)(n+s+1)}{(s+2)(s+1)} c_s$ $s = 0,1,2,\cdots$
 - (iii) If it is given that $c_0 = \frac{(-1)^{n/2} n!}{2^n [(n/2)!]^2}$, then using part (ii) show that for even values of n, $c_n = \frac{(2n)!}{2^n (n!)^2}$.

can

n

- 5. (i) The Bessel function of the first kind of order n, $J_n(x)$ is given by the expansion $J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+n+1)} \left(\frac{x}{2}\right)^{2m+n}$. Suppose it is given that $\frac{d}{dx} \left(x^n J_n(x)\right) = x^n J_{n-1}(x) \text{ and } \frac{d}{dx} \left(x^{-n} J_n(x)\right) = -x^{-n} J_{n+1}(x)$. Then show that
 - (a) $\int J_3(x)dx = -J_2(x) \frac{2}{x}J_1(x) + c$
 - (b) $\int x[J_0^2(x)]dx = \frac{x^2}{2} \left[J_0^2(x) + J_1^2(x) \right] + c$
 - (ii) The Gamma function $\Gamma(n)$ is defined as $\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx$, n > 0
 - (a) Show that $\Gamma(n) = \frac{\Gamma(n+1)}{n}$. Explain how you would use this formula to evaluate $\Gamma(n)$ for negative values of n.
 - (b) Using part (ii) (a) above evaluate $\frac{\Gamma(3) \cdot \Gamma(2.5)}{\Gamma(4.5)}$ and $\Gamma(-3.5)$. You may use $\Gamma(0.5) = \sqrt{\pi}$ without proof.
- 6. The Laplacian of u in plane polar coordinates (r, θ) is given by

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$

- (i) Show that Laplacian of u in Cartesian coordinates is given by $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$
- (ii) Show that If $u(r,\theta)$ satisfies Laplace's equation in polar coordinates, then $v(r,\theta) = u(r^{-1},\theta)$ also satisfies the same equation.
- (iii) Find the relation ship between the constants a and b if $u(x, y) = e^{ax} \cos by$ satisfies Laplace's equation in Cartesian coordinates.

Copyrights Reserved