THE OPEN UNIVERSITY OF SRI LANKA B.Sc/ B.Ed DEGREE PROGRAMME- 2006/2007 Level 4- CHU 2123/ CHE 4123 INORGANIC CHEMISTRY ## **ASSIGNMENT II TEST** Date: 11th December 2006 Time: 3.30- 5.00 p.m. ## Part A- Multiple Choice Questions (45 marks) ## Answer all the questions Select the most correct answer to each question given below and mark a cross X over the answer on the given answer sheet. Any answer with more than one X will not be counted. 3 marks will be awarded for each correct answer. 1/6 th of a mark will be deducted for each incorrect answer. | 1. Which of the fo
(1) NH ₂ -NH ₂
(4) NH ₂ (CH ₂) ₂ | | ?) H ₂ NCH ₂ COO ⁻ | $C_2O_4^{2-}$ (3) F | h ₂ PCH ₂ CH ₂ PPh ₂ | |---|------------------------------|--|--------------------------|---| | 2.What is the coo
(1) 8 | ordination number (2) 6 | of [Ce(NO ₃) ₆] ³ -? (3) 12 | (4) 4 | (5) 5 | | | | $(R_3)_2$ $[R_3)_2$ edral (3) (3) | Octahedral | (4) Square pyramidal | | form stable co | mplexes with Zn ² | nts the increasing o
†?
C ₆ H ₄ COOH | | xylic acids in their ability to
4COOH | | (1) $a < c < b$ | (2) $a < b < c$ | (3) $b < c < a$ | (4) c < b < | (5) $c < a < b$ | | 5. How many geo
(1) 2 | ometric isomers a (2) 3 | | uplexes with the g (4) 5 | general formula MA ₂ B ₂ C ₂ ? (5) 6 | | (1) Ligand tran | sfer reaction | O → Na ₂ SO ₄ + 1
(2) Electron tran
(5) Addition – Di | sfer reaction | | | 7. What is the de
(1) Rb ⁺ >K ⁺ >C
(4) Na ⁺ >Li ⁺ >K | s ⁺ | the rate of exchange
(2) Li ⁺ >Na ⁺ >K ⁺
(5) K ⁺ >Cs ⁺ >Li ⁺ | e for the following | ng alkali metal cations? (3) Rb ⁺ >K ⁺ >Na ⁺ | | 1 | | | | | | |--------------|--|--|--|--|--| | | 8. The IUPAC name of the complex [CrCl ₂ (CN) ₂ (O ₂)(NH ₃)] is (1) Dichloroamminedicyanoperoxochromium (VI) (2) Amminedichlorodicyanoperoxochromium (V) (3) Dicyanodichloroammineperoxochromium (VI) (4) Amminedichlorodicyanoperoxochromium (VI) (5) Amminedichlorodicyanoperoxochromium (IV) | | | | | | | 9. What is the type of isomerism found in the pair of compounds, CoCl ₂ (NH ₃) ₄ NO ₂ and | | | | | | | [CoCl ₂ (NO ₂)(NH ₃) ₄]Cl? (1) Coordination position isomerism (2) Linkage isomerism (3) Geometric isomerism (4) Polymerization isomerism (5) Ionization isomerism | | | | | | | Which of the following statement is not true about coordination compounds? Crystal Field Theory (CFT) provides an explanation for the observed colours of transition metal complexes. Coordination Isomerism can be considered as an extreme case of Ionization isomerism. Back donation increases the accumulation of charge on the metal in a given complex. Halides form more stable complexes when charge to size ratio is larger. Almost all tetrahedral complexes are weak field and high spin. | | | | | | | 11. Which of the following statements is true about an α particle? (1) It is identical to a helium atom (2) It carries a charge of +2 (3) It is not deflected by electric and magnetic field (4) It has a higher penetrating power than a β article (5) It consists of 2 neutrons, 2 protons and 2 electrons. | | | | | | | 12. Decay of potassium-40 produces calcium-40. The mode of decay of potassium-40 is by (1) α emission (2) β emission (3) positron emission (4) electron capture (5) γ emission | | | | | | $\sigma = 1$ | 13. In the ^{238}U (4n+2) decay series, ^{234}Th , ^{234}Pa and ^{234}U are formed among other products. | | | | | | | The modes of decay, respectively, leading to these products will be (1) β , α , α , ending with lead-208 (2) α , β , α , ending with lead-206 (3) α , β , β , ending with lead-206 (4) α , α , β , ending with lead-208 (5) β , β , α , ending with lead-206 | | | | | | | 14. Which of the following represents a chain reaction? | | | | | | | $(1) {}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n \qquad (2) {}_{7}^{14}N + {}_{0}^{1}n \rightarrow {}_{6}^{14}C + {}_{1}^{1}H $ $(3) {}_{15}^{31}P + {}_{0}^{1}n \rightarrow {}_{15}^{32}P + \gamma \qquad (4) {}_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{54}^{139}Xe + {}_{38}^{95}Sr + 2({}_{0}^{1}n)$ | | | | | | | $(5)_{15}^{235}U \rightarrow {}_{90}^{231}Th + {}_{2}^{4}He$ $(7)_{92}^{92}U \rightarrow {}_{0}^{15}U \rightarrow {}_{30}^{231}Th + {}_{2}^{4}He$ | | | | | | | 15 237 M | | | | | | | 15. ²³⁷ Np undergoes decay, giving a series of products, finally ending with ²⁰⁹ Bi. To which decay series do these elements belong? (1) (4n) (2) (4n+1) (3) (4n+2) (4) (4n+3) (5) None of the above. | | | | |