Part B- Structured Essay (110 marks)

1. (a)(i) Calculate the EAN of the metal centre in each of the follows: I. [Mn(CO) ₅] ²	wing complexes
II. $[Pt(NH_3)_4]^{2+}$	(10 marks)
 (ii) Co³⁺ forms stable complexes with the ligands NH₃, en and I. Draw the structures of these complexes. II. List the complexes in the ascending order of stability. Ganswer. (en: H₂N-CH₂-CH₂-NH₂; dien: H₂N-CH₂-NH- 	live reasons for your
 (iii) Identify the type of isomerism(s) in each of the following structures of the isomers. I [Fe (NH₃)₃(H₂O)₃]³⁺ II [Fe (H₂O)5(NCS)]²⁺ 	complexes. Draw the
III $[Co(en)_2Cl_2]^+$	(15 marks)
 (ii) Crystal Field Splitting Energy (Δ) for [IrCl₆]³ is 27,600 cm the wavelength of maximum absorption (λ_{max})? (h = 6.63x1 (iii) Using Crystal Field Theory, calculate the magnetic moment [Rh(CN)₆]³. Indicate whether it is diamagnetic or paramagn (μ = [n(n+2)]^{1/2} B.M. where n is the number of unpaired elect Rh = 45) 	0^{-34} Js; c = $3x10^8$ ms ⁻¹). t (μ) of the complex etic.
2.(a)(i) What is meant by the 'activity' of a radioactive sample?(ii) A Curie (Ci) is defined as the disintegration rate of 1g of radiu	ım-226.
Show that 1 Curie = 3.7×10^{10} Bq. (Half-life of radium-226 is 1622 years).	(15 marks)
(Hall-life of fadium-220 is 1022 years).	(13 marks)
(b) Write complete nuclear equations for the nuclear reactions repres (i) $_{13}^{27}Al(\alpha,)_{15}^{30}P$ (ii) $_{5}^{10}B(n, 2\alpha)$	sented by the following: (iii) ${}_{3}^{6}Li(,\alpha){}_{1}^{3}H$ (15 marks)
(c) Identify the following reactions as radioactive decay, fission, fusion (i) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$	on and chain reactions.
(ii) ${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e$	
(iii) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{135}_{53}I + {}^{97}_{39}Y + 4({}^{1}_{0}n)$	(15 marks)

(15 marks)