The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme – Level 04
Final Examination – 2006/2007
Pure Mathematics
PMU 2191/PME 4191 – Vector Analysis

112

Duration: - Two and a Half Hours

Date:- 11-11-2006.

Time :- 1.00 p.m. - 3.30 p.m.

Answer Four Questions Only.

- 01. (a) Define a stationary point of a single valued function f(x, y). Briefly explain how you would determine their nature.
 - (b) Find and classify the stationary points of the function $f(x, y) = (x + y 1)(x^2 + y^2)$.
 - (c) An aqueduct is to be made out of long lead sheets of width 9m. It is constructed by bending each of the sheets into the shape shown below. Find the inclined x of each side and the angle of inclination θ for which the aqueduct's capacity is a maximum.

- 02. Prove that grad ϕ is a vector normal to the contour curve $\phi(x, y) = \text{constant}$.
 - (a) The scalar field function ϕ is given by $\phi(x, y) = 5 x^2 2y^2$.
 - (i) Sketch the contour curves of this function.
 - (ii) Determine the gradient of ϕ at the point (1, 0) in the direction of the unit vector $\underline{i} + \alpha \underline{j}$
 - (iii) For what value of α does the directional derivation in part (b) have maximum magnitude?
 - (b) Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $r = \sqrt{x^2 + y^2 + z^2}$. Prove that for any real number n,

(i)
$$\nabla \left(\frac{1}{r}\right) = \frac{-\underline{r}}{r^3}$$

(ii)
$$\nabla(r^2) = nr^{n-2}\underline{r}$$
.

- **03.** (a) Evaluate the surface integral $\iint_D (x^3y + \cos x) dxdy$ where *D* is the region bounded by y = x, $x = \pi/2$ and y = 0.
 - (b) Evaluate $\iint_R e^{x^2+y^2} dxdy$ where R is the region bounded by $x^2+y^2=1$, $x^2+y^2=4$, x=0 and y=0.

- (c) Find the volume cut out of a sphere of radius a by a circular cone of semi vertical angle $\pi/4$, where vertex is at the centre of the sphere.
- (d) The x-coordinate of the centre of gravity of a solid of uniform density ρ is defined by

$$\overline{x} = \frac{\int_{B} \rho x dv}{\int_{A} \rho dv}$$
. Find the x-coordinate of the centre of gravity of solid of uniform density ρ

lying in the region $x \ge 0$, $y \ge 0$, $z \ge 0$, bounded by the three coordinated planes and the sphere $x^2 + y^2 + z^2 = a^2$.

- 04.(a) State Gauss' Divergence theorem.
 - (b) Verify the Divergence theorem for the vector field $\underline{F} = \frac{1}{6}xyz\left(x\underline{i} + y\underline{j} + z\underline{k}\right)$ where V is the volume enclosed by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c.
 - (c) If a region B is bounded by a surface S, show that $\oint_S \frac{r \cdot \underline{n}}{r^2} dA = \int_B \frac{1}{r^2} dV$, where \underline{r} is the position vector and $r = |\underline{r}|$ and \underline{n} is outward unit normal vector.
 - (d) Show that $\oint_S \underline{r} \cdot \underline{n} \ dA = 3V$, where \underline{r} is the position vector and S is a closed surface enclosing region B of volume V.
- **05.**(a) Show that a vector field \underline{F} is irrotational if and only if $\int \underline{F} \cdot d\underline{r} = 0$.
 - (b) Show that if the vector filed \underline{F} is irrotational, then the line integral $\int_C \underline{F} \cdot d\underline{r}$ from a point A to a point B is independent of the path C from A to B.
 - (c) Show that if \underline{F} is an irrotational vector field, then there exists a scalar field φ such that $\underline{F} = \operatorname{grad} \varphi$.
 - (d) Show that the vector field $\underline{F} = yz\underline{i} + (xz + 2yz)\underline{j} + (y^2 + xy)\underline{k}$ is irrotational and find the scalar potential ϕ such that $\underline{F} = \operatorname{grad} \phi$.
- **06.**(a) If an incompressible fluid has density ρ and velocity \underline{u} , then the show that $\frac{\partial \rho}{\partial t} + div(\rho \underline{u}) = 0.$
 - (b) Show that for an incompressible fluid of uniform constant density, the equation of continuity reduces to $div \underline{u} = 0$.
 - (c) Hence show that the flow specified by the velocity field $\underline{u} = cx\underline{i} + cy\underline{j} 2cz\underline{k}$, where c is a constant, is possible for an incompressible fluid of uniform constant density.