The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme – Level 04
Final Examination – 2006/2007
Applied Mathematics
AMU 2181/AME 4181 – Mathematical Modelling I

093

Duration :- Two and Half Hours.

Date: 24-11-2006.

Time: - 9.30 a.m. - 12.00 noon.

Answer Four Questions Only.

- 01. The ABC electric appliance company produces two products: refrigerators and ranges. Production takes place in two separate departments. Refrigerators are produced in department I and ranges are produced in department II. The company's two products are produced and sold on a weekly basis. The weekly production cannot exceed 25 refrigerators in department I and 35 ranges in department II, because of limited available facilities in the two departments. The company regularly employs a total of 60 workers in the two departments. A refrigerator requires 2 man-weeks of labour, while a range requires 1 man-week of labour. A refrigerator contributes a profit of Rs. 60 and a range contributes a profit of Rs. 40. Formulate the problem as a linear programming problem to determine the number of units of refrigerators and ranges should the company produce to realize a maximum profit. Solve the model and find the solution.
- 02. Find the solutions to the following problems using graphical method:

(a) Minimize
$$Z = -x_1 + 2x_2$$
,
subject to $-x_1 + 3x_2 \le 10$
 $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 2$

$$x_1, x_2 \ge 0.$$

(b) Maximize
$$Z = -x_1 + 4x_2$$

subject to
$$3x_1 - x_2 \ge -3$$

 $-0.3x_1 + 1.2x_2 \le 3$
 $x_1, x_2 \ge 0$.

03. Solve the following linear programming problem using Big-M method:

Maximize
$$Z = 2x_1 - 3x_2 - 5x_3$$

subject to $-2x_1 + 3x_2 \ge 5$
 $2x_1 + 4x_2 - x_3 \le 2$
 $x_1 + 2x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$.

- 04.(a) What is meant by dual problem of a linear programming model?
 - (b) Consider the problem

Minimize
$$Z = 2y_1 + y_2$$

subject to $y_1 - y_2 - y_3 \ge 5$
 $y_1 + 2y_2 + 4y_3 \ge 8$
 $y_1, y_2, y_3 \ge 0$.

What is the dual of the above problem? Find solution of the primal problem by solving its dual.

05. Consider the problem

Maximize
$$Z = 45x_1 + 100x_2 + 30x_3 + 50x_4$$

subject to
$$7x_1 + 10x_2 + 4x_3 + 9x_4 \le 1200,$$

$$3x_1 + 40x_2 + x_3 + x_4 \le 800,$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

The optimal tableau for this problem is given below:

Basis	x_1	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	<i>x</i> ₆	Value
<i>x</i> ₃	5/3	0	1	7/3	4/ /15	$-\frac{1}{15}$	800/3
<i>x</i> ₂	1/30	1	0	-1/ ₃₀	$-\frac{1}{150}$	² / ₇₅	40/3
Z	-25/3	0	0	-50/3	-22/3	$-\frac{2}{3}$	

If a new variable x_7 is added to this problem with a column $\begin{bmatrix} 10\\10 \end{bmatrix}$ and corresponding cost coefficient $(C_7) = 120$, find the change in the optimal solution.

06. A company wants to produce three products A, B and C. The unit profits on these products are Rs. 4, Rs. 6 and Rs. 2 respectively. These products require two types of resources, man-power and material. The following linear programming problem is formulated for determining the optimal product mix:

Maximize
$$Z = 4x_1 + 6x_2 + 2x_3$$

subject to $x_1 + x_2 + x_3 \le 3$ (man-power)
 $x_1 + 4x_2 + 7x_3 \le 9$ (material)

$$x_1, x_2, x_3 \ge 0,$$

where x_1 , x_2 , x_3 are the number of units of the products A, B and C produced respectively.

The optimal simplex table for the above problem is given below:

basis	x_1	x ₂ .	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> ₅	values
x_1	1	0	-1	4/3	-1/3	1
<i>X</i> ₂	0	1	2	-1/3	1/3	2
z	0	0	-6	-10/3	-2/3	-16

- (i) Find the range of the cost coefficient (C_3) of the non-basic variable x_3 such that the current optimal product mix remains optimal.
- (ii) What happens if C_3 is increased to Rs. 12? What is the new optimal product mix in this case?
- (iii) Find the range of the cost coefficient of the basic variable x_1 such that the current optimal product mix remains optimal.