THE OPEN UNIVERSITY OF SRI LANKA B.Sc/ B.Ed DEGREE PROGRAMME- 2006/2007 Level 4- CHU 2123/ CHE 4123 INORGANIC CHEMISTRY ## ASSIGNMENT TEST II (REPEAT) | Date: 01 st March 2007 | este status, and a second as the second of the second | Time: 3.30- 5.00 p.m. | |---|---|--| | Part A- Multiple Choice Questions (45 | marks) | | | Answer all the questions | | | | Select the most correct answer to each que on the given answer sheet. Any answer we awarded for each correct answer. 1/6 th or | ith more than one $m{X}$ will $m{x}$ | not be counted. 3 marks will be | | 1. Which of the following is a bidentate li | gand that does not form c | helates? | | (1) H ₂ NCH ₂ COO (2) Ph ₂ PCH ₂ CH ₂
(5) NH ₂ (CH ₂) ₂ NH(CH ₂) ₂ NH ₂ | PPh_2 (3) $C_2O_4^{2-}$ | (4) NH ₂ -NH ₂ | | 2. What is the coordination number of Mo
(1) 4 (2) 6 (3) 8 | o in [Mo(CN) ₈] ⁴⁻ ?
(4) 16 | (5) 12 | | 3. In which one of the following does the $(1)[PtCl_2(PR_3)_2]$ (2) $[Ni(CN)_4]^{2^2}$ (5) $[Mo(CO)_6]$ | metal have a tetrahedral g (3) [FeBr ₄] (4) [Fe(Co | geometry?
O)₅] | | 4. The oxidation number of Pt in [PtMe(0 (1) +6 (2) +4 (3) +5 | (4) +3 | (5) +2 | | 5. How many geometric isomers are poss (1) 2 (2) 3 | ible for complexes with the (3) 4 (4) 5 | ne general formula MA ₄ BC? (5) 6 | | 6. Identify the type of isomerism found in [Co(ONO)(NH₃)₅]Cl₂ (red). (1) Coordination isomerism (4) Polymerization isomerism | the pair of compounds [4] (2) Linkage isomerism (5) Ionization isomerisr | (3) Geometric isomerism | | 7. What is the type of isomerism found in | | | | [Cr(NH ₃) ₆] [Co(CN) ₆]?
(1) Coordination position isomerism
(4) Polymerization isomerism | (2) Linkage isomerism (5) Ionization isomerism | (3) Geometric isomerism | | | | | | | 8. The IUPAC name of the com (1) diiodofluorotriammineco (2) fluorodiiodotriammineco (3) triamminediiodofluoroco (4) triamminefluorodiiodoco (5) triamminefluorodiiodoco | balt(III)
balt(III)
balt(III)
balt(II) | H ₃) ₃] is | | | | | |---|--|--|------------------------------------|---|--|--|--| | 9. What is the IUPAC name of the complex K₃[Fe(CN)₅(NO)] ? (1) potassium nitrosylpentacyanoferrate(III) (2) tripotassium nitrosylpentacyanoferrate(III) (3) potassium pentacyanonitrosylferrate(III) (4) potassium pentacyanonitrosylferrate(II) (5) tripotassium pentacyanonitrosylferrate(III) | | | | | | | | | | 10. Which of the following con (1) [Mn(CO) ₅] ²⁻ (4) [MnBr(CO) ₅] | | 2 | (3)[Ni(NH ₃) ₆] ²⁺ | | | | | | 11. Decay of carbon -14 product(1) α emission(4) electron capture | ces nitrogen. Wh (2) β emission (5) γ emission | at is the mode of | decay of carbon -14? (3) positron emission | | | | | 12. ²³⁸U decays to give ²³⁴Th, ²³⁴Pa and ²⁰⁶Pb among other products. To what decay series do these radionuclides belong? (1) (4n) (2) (4n+1) (3) (4n+2) (4) (4n+3) (5) They do not belong to any of these series | | | | | | | | | | 13. Which of the following reprint (1) ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}H$
(3) ${}_{15}^{31}P + {}_{0}^{1}n \rightarrow {}_{15}^{32}P + \gamma$
(5) ${}_{92}^{235}U \rightarrow {}_{90}^{231}Th + {}_{2}^{4}He$ | | $(2)_{7}^{14}N + {}_{0}^{1}n -$ | | | | | | 14. In the ^{235}U (4n+3) decay series, ^{231}Th , ^{231}Pa and ^{227}Ac are formed as the initial products of decay. The modes of decay, respectively, leading to these products will be | | | | | | | | | (1) β, α, α, ending with lead-207 (3) α, β, β, ending with lead-206 (5) β, β, α, ending with lead-208 | | (2) α, β, α, ending with lead-207 (4) α, α, β, ending with lead-207 | | | | | | | 15. Which of the following statements are true about a β particle? (a) It is identical to an electron (b) It carries a charge of -1 (c) It is deflected by electric and magnetic field (d) It has a higher penetrating power than an α particle. | | | | | | | | | | The correct answer is (1) (a) and (b) only (4) (a) and (d) only | (2) (b) and (c)
(5) All of the a | | (3) (c) and (d) only | | | | | | | | | | | | |