Part B- Structured Essay (110 marks)

1. (a)(i) Calculate the EAN of the metal centre in each of the following complexes

I. $[Ni(NH_3)_6]^{2+}$ (Ni = 28)

- II. $[MnBr((CO)_5]$ (Mn = 25)
- (ii) Draw all the possible isomers of each of the following complexes.

I. [CoCl₂(en)₂]

- II. [RuBrCl₂(NH₃)₃]
- (iii) Ethylenediamminetetraacetic acid (H₄Y) can act as a hexadentate ligand. Its tetraacetate ion Y⁴ can complex with a variety of metal ions (Mg²⁺, Ca²⁺, etc) and this forms the basis of Complexometric titrations. Draw the structure of complex CaY².

(35 marks)

- (b)(i)Crystal Field Splitting Energy (Δ_0) for $[Ir(NH_3)_6]^{3+}$ is 41,000 cm⁻¹[Ir = 6s²5d⁷]. What is the wavelength of maximum absorption (λ_{max})? (h = 6.63x10⁻³⁴ Js; c = 3x10⁸ ms⁻¹).
 - (iii) Using Crystal Field Theory, calculate the magnetic moment (μ) of the complex $[\operatorname{CrCl}_6]^3$. Indicate whether it is diamagnetic or paramagnetic. $(\mu = [n(n+2)]^{1/2} \text{ B.M., where n is the number of unpaired electrons).}$

(20 marks)

- (c)(i) Write down the main assumptions made in the Valance Bond Theory(VBT)
 - (ii) If the magnetic moment of [MnBr₄]²⁻ is 3.8 BM (i.e., it contains 3 unpaired electrons), what is the geometry of this complex ion?

(15 marks)

2. (a)(i) Write down the relationship between half-life $(t_{1/2})$ and the decay constant (λ) (ii) The half-life ¹⁴C is 5600 years. How long would it take for a sample containing $104 \text{mg of } ^{14}\text{C}$ to become 3.125%?

(10 marks)

(b) Write complete nuclear equations for the nuclear reactions represented by the following:

(i) ${}_{4}^{9}Be(\alpha,){}_{6}^{12}C$ (ii) ${}_{7}^{14}N(\cdot, p){}_{8}^{17}O$

(iii) ${}_{7}^{14}N$ (n, p)

(15 marks)

(c) Identify the following reactions as radioactive decay, fission, fusion and chain reactions.

(i) ${}_{1}^{1}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He$

(ii) ${}^{40}_{19}K \rightarrow {}^{40}_{20}Ca + {}^{0}_{-1}e$

(iii) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{143}_{56}Ba + {}^{90}_{36}Kr + 3({}^{1}_{0}n)$ (15 marks)