The Open University of Sri Lanka
B.Sc./B.Ed Degree Programme – Level 05
Final Examination 2008/2009
Applied Mathematics
AMU 3183/AME 5183 – Numerical Methods II

0.75

Duration: - Two and Half Hours.

Date: - 23.12.2008

Time: -1.00 p.m. -3.30 p.m.

Answer Four Questions Only

- 01. (i) Explain how you would find the Lagrange interpolation polynomial P(x) for the data set $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$.
 - (ii) With the usual notation, prove that the error of the Lagrange's interpolation $\frac{\pi(x)f^{n+1}(c)}{(n+1)!}$, where $c \in (x_0, x_n)$
 - (iii) The error function $e_x f(x)$ is defined by the integral

$$e_r f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

Approximate $e_r f(0.08)$ by linear interpolation using the given table of correctly rounded values.

x	0.05	0.10		
$e_r f(x)$	0.05637	0.11246		

- (a) Estimate the total error.
- (b) Find the maximal total error for linear interpolation in the interval $0.05 \le x \le 0.10$, using a step size of 0.025.
- 02.(i) Write down with the usual notation, Simpson's rule to evaluate $\int_a^b f(x)dx$.
 - (ii) Prove that the truncation error E in using the above rule for the integral $\int_{a}^{b} f(x)dx$ is given by $E = \frac{-(b-a)h^4 f^{iv}(c)}{180}$; where $c \in (a,b)$ and $h = \frac{b-a}{n}$.

(iii) The upward velocity of a rocket can be computed by the following formula.
$$v = u \ln \left(\frac{m_0}{m_0 - qt} \right) - gt$$
; where v is the upward velocity u is the velocity at which fuel is expelled relative to the rocket, m_0 is the initial mass of the rocket at time $t=0$. q is the fuel consumption rate and g is the downward acceleration of gravity $(g=9.8 \text{ ms}^{-2})$.

If
$$u=2200ms^{-1}$$
, $m_0 = 160,000kg$ and $q = 2680kgs^{-1}$

- (a) Use Simpson's rule to determine how high the rocket will fly in 30s.
- (b) Estimate the maximum truncation error.
- 03. (i) The centered difference operator δ is defined as $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$. Prove the following.
 - (a) $\triangle = \delta E^{\frac{1}{2}}$ Where \triangle is the forward difference operator.

(b)
$$\triangle = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

(c)
$$E^{\frac{1}{2}} + E^{-\frac{1}{2}} = \frac{2+\Delta}{\sqrt{1+\Delta}} = \frac{2-\nabla}{\sqrt{1-\nabla}}$$
; Where ∇ is the backward difference operator.

(ii) An engineer involved in the design of automobiles uses an experimental system for studying the motion of a wide variety of vehicular devices in a full-scale laboratory environment. One particular test involves an accurate measurement of the displacement x of the vehicle as a function of time t. This information is then used to determine the velocity v, the acceleration A, and the rate of change of acceleration F as functions of time.

In a given experiment, the displacement X was measured over a time range of 0s to 10s at step of 0.1s. Some of the results obtained are as follows.

	0.0	[0.1	0.2	0.3	0.4	0.5	0.6
T(s)	0.0	0.1	0.2			5.2625	6.6528
X(s)	0.0	0.8733	1.8224	2.8611	4.0032	3.2023	0.0320
/አ(3/	1 0.0						

From these data

Compute the v, A and F at t=0s, employing forward differences with the step size $\Delta(t)$ of 0.1s.

- 04. (i) Derive normal equations for the least squares straight line fit.
 - (ii) The presure P of a gass corresponding to various volumes v was recorded as follows.

v(cm3)	50	60	70	90	100
P(kg/cm2)	64.7	51.3	40.5	25.9	7.8

The ideal gas law is given by the equation $PV^r = C$, where r and C are constants.

- (a) Find the least squares estimates of r and C from the given data.
- (b) Estimate P when $V = 80 \text{cm}^3$.
- 05.(i) Show that the second order Runga-Kutta method, when applied to

$$y' = -y, y(0) = 1$$
 yields $y_m = (1 - h + \frac{h^2}{2})^m$

(ii) Consider the following predictor-corrector pair

$$y_{m+1}^{(0)} = y_m + \frac{h}{2}(y_m' + f(x_m + h, y_m + hy_m') \text{ and}$$

$$y_{m+1}^{(i+1)} = y_m + \frac{h}{2}(y_m' + f(x_{m+1}, y_{m+1}')) \quad i = 0, 1, 2... \quad \text{where } y_m' = f(x_m, y_m)$$

- (a) What is the name of this predictor?
- (b) What are the Orders of the two formulas?
- (c) What advantage does this predictor have over $y_{m+1}^{(0)} = y_{m-1} + 2hf(x_m, y_m)$?
- 06. (i) Derive the Euler formula for finding the solution of a first order differential equation $\frac{dy}{dx} = f(x, y)$ under the initial condition $y(x_0) = y_0$.
 - (ii) A metal piece of mass M is released at zero velocity in a liquid and allowed to fall freely under the frictional force. The drag action on the piece due to friction is $M(AV + BV^2)$, where A and B are constants and V is the downward velocity.
 - (a) Using Euler's method compute the velocity V as a function of time t for $B=0.1m^{-1}$ and $A=2s^{-1}$.
 - (b) Using part(a), find the downward velocity when t = 0.5s. Take the down ward acceleration of gravity, g to be 9.8 ms⁻².