The Open University of Sri Lanka
B.Sc. /B.Ed. Degree Programme – Level 05
Final Examination – 2007/2008
Pure Mathematics
PMU 3295 – Ring Theory Paper 2
Duration: - Two and Half Hours.

Date: - 07-06-2008

Time: - 10.00 a.m. - 12.30 p.m.

Answer Four Questions Only.

- (1) (i) Suppose (R, +, *) is a ring and M(R) is the ring of 2×2 matrices with elements in R under usual addition and multiplication. Prove that if M(R) is commutative then a * b = 0 for all $a, b \in R$.
 - Suppose (G, +) is an abelian group. Define a multiplicative operation (*) on G such that every subgroup of (G, +) is an ideal of (G, +, *).
- (2) Suppose R is a ring and A is a right ideal of R. Consider $I(A) = \{x \in R : xa \in A \text{ for all } a \in A\}$. Prove the following,
 - (i) I(A) is a subring of R.
 - (ii) $A \subseteq I(A)$.
 - (iii) A is an ideal of I(A).
 - (iv) If S is a subring of R such that A is an ideal of S then $S \subseteq I(A)$.
- (3) Suppose R is a ring and $a \in R$. Let $I_a = \{r \in R : ra = 0\}$ and $J_a = \{r \in R : ar = 0\}$. Prove that I_a is a left ideal of R and J_a is a right ideal of R. Let R be the set of all 2×2 matrices with integer entries with usual addition and multiplication and let $a = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. Find I_a and J_a . Is $I_a \cap J_a$ is an ideal of R?.
- (4) An ideal I is said to be a minimal ideal of a ring R if $I \neq \{0\}$ and there are no non zero ideals $J \neq I$ of R such that $I \subset I$.
 - (i) Prove that I is a minimal ideal of R if and only if the ideal generated by a, a = A for all A ∈ A.
 - (ii) Prove that Z does not have any minimal ideals.
 - (iii) Find all minimal ideals in Z_{72} . You don't need to justify your answer.

- (5) Let R be a commutative ring and let P be a prime ideal of R. Consider the set $S = \{(a,b): a,b \in R \text{ and } b \notin P\}$. Define the relation \sim on S by $(a,b)\sim(c,d)$ iff $ad-bc \in P$.
 - (i) Prove that \sim is an equivalence relation on S.
 - (ii) Consider $S/_{\sim} = \{[(a,b)]: (a,b) \in S\}$ where $[(a,b)] = \{(c,d) \in S: (a,b)\sim(c,d)\}$. Define addition and multiplication on $S/_{\sim}$ by [(a,b)] + [(c,d)] = [(a+c,b+d)] [(a,b)] * [(c,d)] = [(ac,ba]]. Prove that these operations are well defined.
 - (iii) Prove that $(S/\sim, +, *)$ is an integral domain.
- (6) Suppose R and S are rings and $\varphi: R \to S$ is a ring homomorphism. State whether following statements are true or false. Justify your answer
 - (i) If A is a subring of R then $\varphi(A)$ is a subring of S.
 - (ii) If A is an ideal of R then $\varphi(A)$ is an ideal of S.
 - (iii) If B is an ideal of S then $\varphi^{-1}(B) = \{a \in R : \varphi(a) \in B\}$ is an ideal of R.