

The Open University of Sri Lanka
B.Sc/B.Ed Degree Programme
Final Examination 2007/2008
Level 03 - Applied Mathematics
AMU 1182/AME 3182 - Conics and Vector Algebra

Duration :- 2 Hours.

Date: 09.06.2008.

Time: 01.30 pm. - 03.30 pm.

Answer FOUR questions only.

- 01. Consider the line joining the two end points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$.
 - (i) Find the vector \overrightarrow{AB} and the length of AB.
 - (ii) Find the direction ratios of \overrightarrow{AB} , and hence find the direction cosines of \overrightarrow{AB} .
 - (iii) A, B and C are three points with coordinates (3, -1, 5), (7, 1, 3) and (-5, 9, -1) respectively. L and M are midpoints of AB and BC. Find the length and direction cosines of the line LM.
- 02. (a) A straight line, is parallel to a vector \underline{m} and passes through a fixed point A, with position vector \underline{a} . Find the position vector of any point on the line.
 - (b) Hence, find the Cartesian equations of the above line.
 - (c) Find the vector equation of the line through A(2, -1, 5), which intersects perpendicularly, the line whose equations are $\frac{x-3}{1} = \frac{y-1}{2} = \frac{z+1}{2}$.
- 03. Using vectors find expressions for the
 - (i) area of a parallelogram,
 - (ii) area of a Triangle,
 - (iii) volume of a parallelepiped,
 - (iv) volume of a tetrahedron.

Hence, find the area of the triangle ABC, whose vertices are at the points A(1, 2, 1), B(1, 0, 3) and C(-1, 2, -1).

(b) Find the vector equation of the plane through the points A(0, 1, 1), B(2, 1, 0) and C(-2, 0, 3)

D

Б

- (i) in parametric form,
- (ii) in scalar product form.
- 05. A particle moves so that it's position vector is given by $\underline{r} = \cos \omega t \underline{i} + \sin \omega t \underline{j}$ where ω is a constant. Show that
 - (a) The velocity of the particle is perpendicular to \underline{r} .
 - (b) The acceleration \underline{a} is directed towards the origin and has magnitude proportional to the distance from the origin.
 - (c) $\underline{r} \times \underline{y}$ is a constant vector.
- 06.(a) Consider the equation $5x^2 + 6xy + 5y^2 + 12x + 4y + 6 = 0$ of a conic. Write down the associated matrix, \underline{A} and find an orthogonal matrix \underline{P} such that $\underline{P}^T \underline{A} \underline{P} = \underline{D}$, where \underline{D} is a diagonal matrix.
 - (b) Expressing the equation in part (a) in matrix form and making the transformation X = PX' reduced it to $x^2 + 4y^2 + 2\sqrt{2}x + 4\sqrt{2}y + 3 = 0$.
 - (c) Show further that the equation (b) represents a ellipse.

- Copyrights reserved -