THE OPEN-HNIVERSITY OF SRI LANKA DIPLOMA IN TECHNOLOGY (CIVIL) - LEVEL 04 Final Examination 2011/2012

00111

CEX4230 - SOIL MECHANICS AND INTRODUCTION TO ROCK MECHANICS

Tim	e allowe	d: Three Hours.	Index No.	
Date	e: Friday	/,16 ⁱⁿ March, 2012	Time: 1400-1700	
Ans You		questions. All questions carry equal marks. <u>Attach</u> Part A of this paperised to spend approximately One (1) hour for Part A. State your resp		
1.	Which c	of the following statements are true?		
		 A. 100g of mineral Kaolinite adsorbs less water than 100g of mineral B. Plastic limit is the consistency limit between semi-liquid and semi C. A 'ML' soil is a silty soil. D. A 'CH' soil should have Plasticity Index greater than 20. 	the state of the s	
	a)	A, B and C only b) A, B and D only c) B, C and D only d) A, C and D only	
	e)	A, B, C and D.		
2.	2. A saturated clay soil specimen has the following properties:			
		Natural water content = 60% Void Ratio = 0.67 Liquid Limit = 82 Plastic Limit = 35		
		Its Liquidity Index is:		
	a)	0.47 b) 0.53 c) 0.68 d) 0.73 e) 0.77		
3.	Bulk De	ensity of a soil is expressed as $\rho = \frac{G_s + Se}{X} \cdot \rho_w$. The denominator, X	is equal to:	
	а)	1+w b) 1+n c) 1+S d) 1+e e) n		
4.	A sandy soil is subjected to a consolidated drained triaxial loading test, at a constant cell pressure 100kPa. The deviatoric stress at failure is found to be 225kPa. The friction angle ϕ' is equal to:			
	a) -	32 b) 33 c) 34 d) 35 e) 36		
5.	Which o	of the following statements are true regarding Terzaghi's 1-dimentiona	I consolidation theory?	
	٠	A. During initial compression it is considered that excess pore water takes place.	r pressure dissipation	
	Ngjar	B. Time taken for primary consolidation to occur depends on the pe	rmeability of the soil.	
		C. Degree of consolidation measures primary consolidation settlem placing the load.		
		 D. A plot of settlement versus logarithmic time is used to estimate s pore water pressure. 	ettlement at zero exces	
	a)	A, B and C only b) A, B and D only c) B, C and D only	i) A, C and D only	
	e)	A, B, C and D.		
6.	The res	sults obtained during a Standard Proctor Compaction test specimen a	re given below:	
		Weight of soil + mould (g) = 3921.4 Weight of mould (g) = 1933.0 Average water content (%) = 10.1 Volume of mould (c.c.) = 1000 G _s = 2.65		

The dry density in kN/m³ is equal to:

- B. USCS requires us to determine the type of fines.
- C. USCS recommends Liquid and Plastic Limit tests to determine the type of fines.
- D. The soil may be classified as SC.
- b) A and C only a) A and B only c) A and D only B and C only
- e) B and D only
- 12. Which of the following statements are true?
 - A. Auger boring with periodic withdrawal of material is suitable for soft clays.
 - B. Rotary drilling removes cutting using circulating drilling fluid.
 - C. Standard Penetration Test uses a split barrel sampler.
 - D. Undisturbed samples are obtained by driving a tube sampler.
 - a) A, B and C only b) A, B and D only c) B, C and D only d) A, C and D only
 - e) A, B, C and D.

Answer <u>four</u> questions. All questions carry equal marks. You are advised to spend approximately 28 minutes per question. (16x4 = 64 points)

1. Figure B1 shows compaction curves observed for various soil types.

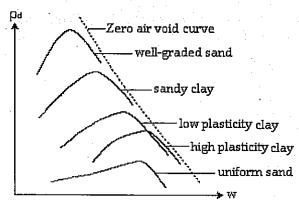


Figure B1

- a) <u>Derive</u> the relationship for dry density, p_d in terms of degree of saturation, S, specific gravity,
 G_s and water content, w. (4 points)
- b) Sketch to the same approximate scale, the 3-phase diagrams for:
 - i) A soil element, which is wet of optimum moisture content.

(2 points)

ii) A soil element, which is completely saturated.

- (2 points)
- c) <u>Discuss</u> the relative changes in each phase for the two cases discussed in question 1(b) above. (2 points)
- d) <u>Explain</u> why dry density decreases with moisture content, at wet of optimum water content.
 (2 points)
- e) Explain why well-graded sands have higher dry densities than uniformly graded sands. (2 points)
- f) Explain why clays with low and high plasticity have their respective compaction curves closer to the zero air void curve. (2 points)
- 2. Figure B2 shows a retaining wall of a waterfront structure.
 - a) <u>Draw</u> the variation of i) total vertical stress ii) hydro-static stress and iii) vertical effective stress, with depth. State principal values. (4 points)

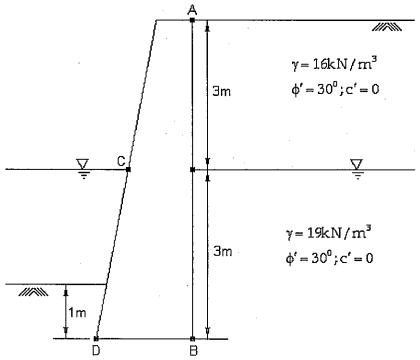


Figure B2

- b) Draw the effective horizontal stress distribution acting on smooth wall, along a meter length of 1 AB, if 'at-rest' condition (i.e. K₀ condition) exists. State principal values. Hence compute the total force per meter length of wall, exerted by the retained soil. (6 points)
- c) State the forces that prevent sliding along base DB.

(3 points)

d) State the forces that prevent overturning about point D.

(3 points)

3. Figure B3 shows a sloping ground AB, retaining a soil height of 3m. AC represents a trial failure plane along which soil wedge ABC may slide. Soil properties are $\gamma = 16 \text{kN/m}^2$, $\phi' = 28^0$, and $c' = 20 \text{kN/m}^2$.

The respective factors of safety are expressed as: $F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}$; $F_{c'} = \frac{c'}{c'_d}$

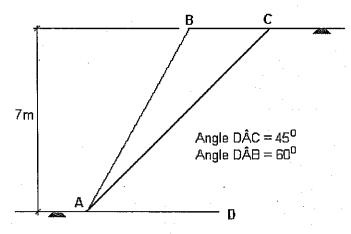


Figure B3

a) <u>Define</u> the terms stated in the two equations representing factors of safety.

(4 points)

b) Compute the normal stress, σ_n acting on plane AC.

(4 points)

c) Compute the shear stress, τ acting on plane AC

(4 points)

d) Hence compute the factor of safety against shear failure.

(4 points)

4. Figure B4(a) shows a plot of $e - \log \sigma'_v$ obtained during an Oedometer test. The sample had an initial height, $H_0 = 20$ mm; average diameter = 50mm; $e_0 = 2.93$; total settlement, $\Delta H = 2.705$ mm.

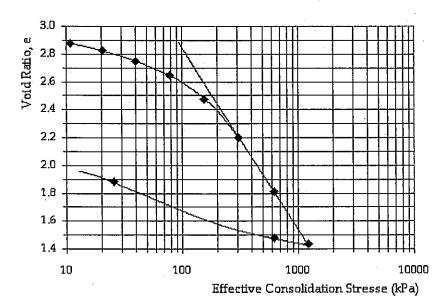


Figure B4(a)

a) Determine the Compression Index and Recompression Index.

(5 marks)

b) <u>Determine</u> the Pre-consolidation pressure.

(3 marks)

- c) Figure B4(b) shows the 16m thick clay layer subject to a 1.5m surcharge fill. The above mentioned specimen is obtained from a 8m depth below ground level.
 - i) Compute the effective vertical overburden stress.

(3 marks)

ii) State whether the soil is Normally Consolidated or Over Consolidated.

(2 marks)

d) Estimate the expected total settlement of the clay layer.

(3 marks)

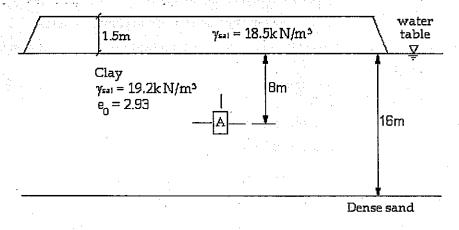


Figure B4(b)

5.

- a) Suppose that you are given a tube sample containing a fine-grained soil; <u>list</u> the standard tests you would perform in order to classify the soil based on Unified Soil Classification System (USCS).
- b) Explain how you would determine its plasticity characteristics based on USCS.

(3 points)

c) Table below lists results of a laboratory test specimen:

Particle size (mm)	% passing
4.75	100
0.15	89
0.425	63
0.063	57
0.04	41
0.02	35
0.01	20
0.001	6

Natural moisture content = 8%

Liquid Limit = 10; Plastic Limit = 7

i) Determine Gravel, Sand, Silt and Clay fractions.

(6 points)

ii) Classify the soil based on USCS.

(4 points)

- 6. Figure B6 shows a pad foundation transmitting its column load to ground.
 - a) <u>Sketch</u> the pressure bulb that demarcates the zone of influence corresponding to 10% of footing pressure. <u>State</u> important dimensions. (6 points)
 - b) Hence <u>estimate</u> the depth of investigation to ensure that the footing may not undergo excessive settlement. (2 points)

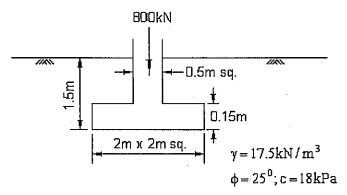
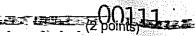
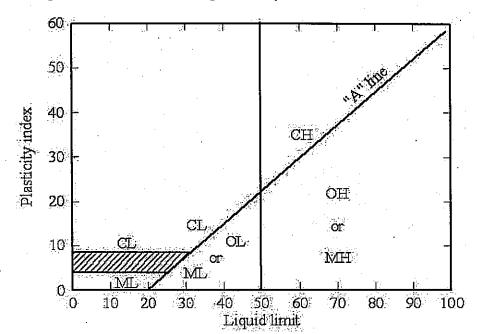
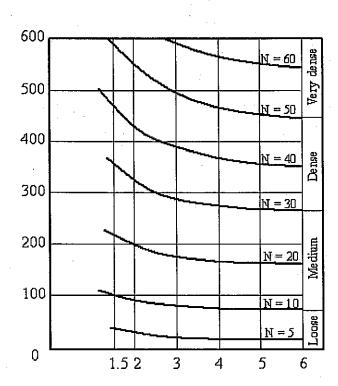



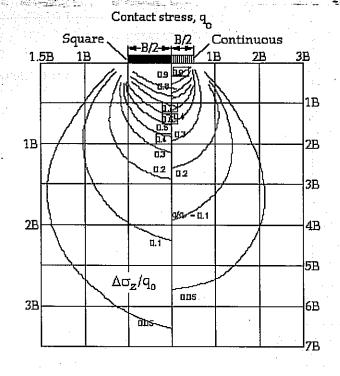
Figure B6

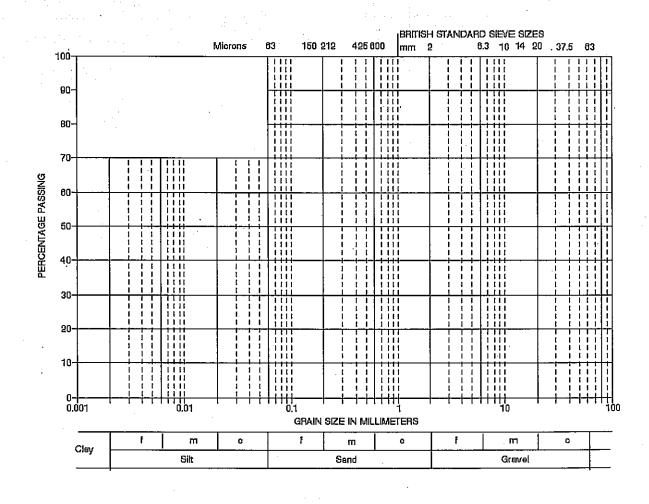
c) Compute the Ultimate Bearing Capacity for the given footing if the super-structure load is 800kN. A suitable unit weight for concrete can be assumed. The Ultimate Bearing Capacity of a square footing is expressed as $q_u = 1.3 \text{cN}_c + q N_q + 0.4 \gamma \text{BN}_\gamma$. (6 points)

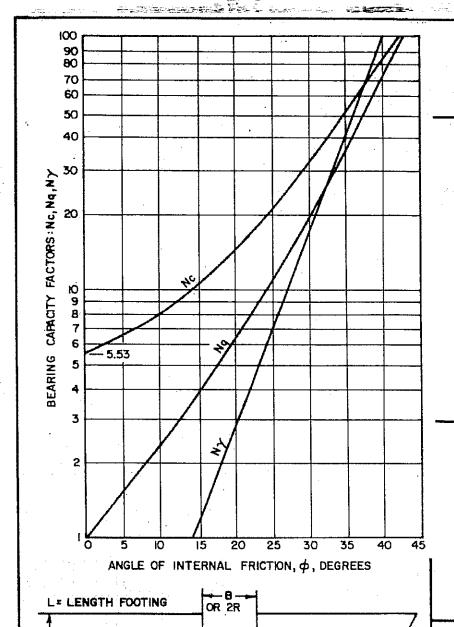
d) Compute the Factor of Salety against ultimate failure.




- 7. Explain the following mechanisms by providing a sketch with explanatory notes.
 - a) The state of a sandy <u>soil surrounding</u> a split barrel sampler when it is driven in, during the Standard Penetration Test. (4 points)
 - b) The state of a sandy soil specimen in a constant head permeameter, when it reaches its critical hydraulic gradient. (4 points)
 - c) State of a soil element at an active state of plastic equilibrium.


(4 points)


d) A fine grained soil that shows a high dilatancy reaction.


(4 points)

ULTIMATE BEARING CAPACITY = quit

CONTINUOUS FOOTING; GENERAL CASE

Quit = q'+q"

- q'= PORTION OF BEARING
 CAPACITY ASSUMING
 WEIGHTLESS FOUNDATION SOIL
- q"= PORTION OF BEARING
 CAPACITY FROM WEIGHT OF
 FOUNDATION SOILS
- q'=CNc+yDNq

 $q''=\gamma \frac{B}{2}N\gamma$

Quit = CN_C+yDNq+ YB Ny SOUARE OR RECTANGULAR FOOTING

Quit = CN_c (I+.3 B/2)+γDNq+0.4γBNγ CIRCULAR FOOTING: R=B/2 Quit = 1.3 CN_c+γDNq+0.6γRN_γ

FOR COHESIONLESS FOUNDATION SOILS (c=0) CONTINUOUS FOOTING:

 $q_{ull} = \gamma DNq + \frac{\gamma B}{2} N_{\gamma}$

SQUARE OR RECTANGULAR FOOTING:

quit = yDNq+0.4 yBNy

CIRCULAR FOOTING:

quit = y DNq + 0.6 y RNy

FOR COHESIVE FOUNDATION SOILS (ϕ = 0)

CONTINUOUS FOOTING:

quit = CNc+yD

SQUARE OR RECTANGULAR FOOTING:

 $q_{ult} = cN_c(1+3\frac{B}{L})+\gamma D$

CIRCULAR FOOTING:

quit =1.3 cNc+yD

ASSUMED CONDITIONS:

ASSUMED FAILURE

- 1. D ⟨ B
- 2. SOIL IS UNIFORM TO DEPTH do > B.
- 3. WATER LEVEL LOWER THAN do BELOW BASE OF FOOTING.
- 4. VERTICAL LOAD CONCENTRIC.

90%-ф

- 5. FRACTION AND ADHESION ON VERTICAL SIDES OF FOOTING ARE NEGLECTED.
- 6. FOUNDATION SOIL WITH PROPERTIES $C_i\phi_i\gamma$

300 Q

THEORETICAL FAILURE