THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed Degree Programme/Continuing Education Programme APPLIED MATHEMATICS - LEVEL 05 AMU3187/AME 5187 – MATHEMATICAL METHODS II FINAL EXAMINATION 2007/2008

DURATION: TWO AND HALF-HOURS

DATE: 19 - 01 - 2008

TIME: 1.00pm - 3.30pm

ANSWER FOUR QUESTIONS ONLY

- 1. Consider the periodic function f(x) defined by $f(x) = \sqrt{1 \cos x} \pi < x < \pi, \text{ and } f(x + 2\pi) = f(x)$
 - (i) Sketch the graph of f(x) for two periods.
 - (ii) Find the Fourier series of f(x).
 - (iii) Using part (ii) show that

$$\frac{\pi - 2\sqrt{2}}{4\sqrt{2}} = \frac{1}{3 \cdot 5} - \frac{1}{7 \cdot 9} + \frac{1}{11 \cdot 13} - \frac{1}{15 \cdot 17} + \dots$$

2. Consider the boundary value problem

$$x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + \lambda y = 0$$
 $1 \le x \le 2$ and $y(1) = y(2) = 0$

- (i) Show that this is a Sturm-Liouville problem.
- (ii) If $z = \ln x$ show that above differential equation can be written as $\frac{d^2y}{dz^2} + \lambda y = 0$
- (iii) Using part (ii) or otherwise find the eigenvalues and the eigenfunctions of the above boundary value problem.

- 3. (i) Let $f_1(x), f_2(x), f_3(x), \cdots$ be a set of real valued functions, which are orthogonal with respect to the weight function p(x) on the interval $a \le x \le b$. If $h_m(x) = \sqrt{p(x)} f_m(x)$ $(m = 1, 2, 3, \cdots)$, then show that $h_1(x), h_2(x), h_3(x), \cdots$ are orthogonal on the interval $a \le x \le b$.
 - (ii) Let $f_0(x) = a$, $f_1(x) = bx$ and $f_2(x) = c(4x^2 1)$ where a, b and c are constants. Show that $f_0(x)$, $f_1(x)$, $f_2(x)$ are orthogonal in the interval $-1 \le x \le 1$ with respect to the weight function $p(x) = \sqrt{1 x^2}$.
 - (iii) Find the value of a, b and c so that $f_0(x), f_1(x), f_2(x)$ are orthonormal in the interval $-1 \le x \le 1$ with respect to the weight function $p(x) = \sqrt{1 x^2}$
- 4. (i) The n^{th} degree Legendre polynomial is given by

$$P_n(x) = \sum_{m=0}^{M} \frac{(-1)^m (2n-2m)!}{2^n m! (n-m)! (n-2m)!} x^{n-2m}$$

Here $M = \frac{n}{2}$ if *n* is even and $M = \frac{n-1}{2}$ if *n* is odd. Using the above equation show that

(a)
$$P_n(-x) = (-1)^n P_n(x)$$

(b)
$$P_{2n}(0) = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2}$$

(c)
$$P_{2n+1}(0) = 0$$

(ii) The Legendre polynomial of degree n, $P_n(x)$ is given by the expansion $(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)t^n$. Using this expansion show that $(n+1)P_{n+1}(x) + nP_{n-1}(x) = (2n+1)xP_n(x), \quad n=1,2,3,\cdots$

Hence show that the norm of $P_n(x)$ is given by $||P_n(x)|| = \sqrt{\frac{2}{2n+1}}$.

5. The Bessel function of the first kind of order n, $J_n(x)$ is given by the expansion

$$e^{\frac{x}{2}\left(t-t^{-1}\right)} = \sum_{n=-\infty}^{\infty} J_n(x)t^n.$$

(i) Using this expansion show that:

(a)
$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x)$$

(b)
$$2J'_n(x) = J_{n-1}(x) - J_{n+1}(x)$$

(ii) Using part (i) or otherwise show that:

(a)
$$J_n''(x) = \frac{1}{4} (J_{n-2}(x) - 2J_n(x) + J_{n+2}(x))$$

(b)
$$\frac{d}{dx} (J_n^2(x)) = \frac{x}{2n} (J_{n-1}^2(x) - J_{n+1}^2(x))$$

(c)
$$J_n(x) = \frac{x}{n} [J_{n-1} - J'_n(x)]$$

6. Consider the boundary value problem of Laplacian equation $\nabla^2 u = 0$ in a square $0 < x < \pi$, $0 < y < \pi$ with boundary conditions

$$u(x,0) = \sin x(1+\cos x) \qquad 0 < x < \pi$$

$$u(x,\pi) = x \qquad 0 < x < \pi$$

$$u(0, y) = 0 \qquad 0 < y < \pi$$

$$u(\pi, y) = 0 \qquad 0 < y < \pi$$

Assuming u(x, y) has a solution of the form $u(x, y) = X(x) \cdot Y(y)$ solve the above boundary value problem.

Copyrights Reserved