The Open University of Sri Lanka
B.Sc. / B.Ed. Degree Programme – Level 03
Open Book Test (OBT) – 2009/2010
Pure Mathematics
PUU 1141 – Foundation of Mathematics

Sample solutions

- 1. i. $P(A) = \{\emptyset, \{2\}, \{\{2\}\}, \{\{2, \{2\}\}\}, \{2, \{2\}\}\}, \{2, \{2, \{2\}\}\}\}, \{\{2\}, \{2, \{2\}\}\}\}, \{2, \{2\}\}\}\}$. ii. No. $1 \in \mathbb{N}$. But $1 \notin \{m+n: m, n \in \mathbb{N}\}$ because there does not exist $m, n \in \mathbb{N}$ such that m+n=1.
- 2. Let x be an arbitrary object.
 - i. Then $x \in A \cup \emptyset$ iff $x \in A$ or $x \in \emptyset$ iff $x \in A$.

Thus both the sets $A \cup \emptyset$, A have the same objects.

Hence $A \cup \emptyset = A$.

ii. $x \in A \cap \emptyset$ iff $x \in A$ and $x \in \emptyset$ iff $x \in \emptyset$.

Thus both the sets $A \cap \emptyset$, \emptyset have the same objects.

Hence $A \cap \emptyset = \emptyset$.

3. i. No. clearly $1, 2 \in \mathbb{N}$ and $0 < 1 \le 100$, $0 < 2 \le 100$. Thus $1, 2 \in \{x \in \mathbb{N} : 0 < x \le 100\}$.

It is clear that
$$1 < \frac{3}{2} < 2$$
. Since $\frac{3}{2} \notin \mathbb{N}$, $\frac{3}{2} \notin \{x \in \mathbb{N} : 0 < x \le 100\}$.

Thus $\{x \in \mathbb{N} : 0 < x \le 100\}$ is not an interval.

ii. Suppose $(x, y) \in A \times (B \cup C)$.

Then $x \in A$ and $y \in B \cup C$.

Thus $x \in A$ and $(y \in B \text{ or } y \in C)$.

Therefore $(x \in A \text{ and } y \in B)$ or $(x \in A \text{ and } y \in C)$.

Hence $(x, y) \in A \times B$ or $(x, y) \in A \times C$.

So, $(x, y) \in (A \times B) \cup (A \times C)$.

Hence $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$.

Now suppose $(x, y) \in (A \times B) \cup (A \times C)$.

Then $(x, y) \in A \times B$ or $(x, y) \in A \times C$.

Thus, $(x \in A \text{ and } y \in B)$ or $(x \in A \text{ and } y \in C)$.

Hence $x \in A$, and $(y \in B \text{ or } y \in C)$.

Thus $x \in A$ and $y \in B \cup C$.

Therefore $(x, y) \in A \times (B \cup C)$.

Hence $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$.

Thus $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Department of Mathematics & Computer Science.

PUU1141 (OBT): Sample Solutions

4. i. $R_1 = \{(1,1),(1,3),(3,1),(3,3),(3,5),(5,3)\}$ and $X = \{1,3,5\}$.

 R_1 is not reflexive because, $5 \in X$ and $(5,5) \notin R_1$.

 R_1 is symmetric because, $(1,3),(3,1) \in R_1,(3,5),(5,3) \in R_1,(1,1) \in R_1,(3,3) \in R_1$

 R_1 is not antisymmetric because, $(1,3),(3,1) \in R_1$ and $1 \neq 3$.

 R_1 is not transitive because, $(5,3),(3,5) \in R_1$ and $(5,5) \notin R_1$.

ii. Let $y \in Y$. $\frac{y}{y} = 1 \in \mathbb{Q}$. Thus yR_2y . Hence R_2 is reflexive.

Now let $y_1, y_2 \in Y$. Suppose $y_1 R_2 y_2$. Then $\frac{y_1}{y_2} \in \mathbb{Q}$. Hence $\frac{1}{y_1} \in \mathbb{Q}$.

Therefore $\frac{y_2}{y_1} \in \mathbb{Q}$. Thus $y_2 R_2 y_1$. Hence R_2 is symmetric.

Now let $y_1, y_2, y_3 \in Y$ and suppose that $y_1 R_2 y_2$ and $y_2 R_2 y_3$. Thus $\frac{y_1}{y_2}, \frac{y_2}{y_3} \in \mathbb{Q}$.

Therefore $\frac{y_1}{y_2} \cdot \frac{y_2}{y_3} \in \mathbb{Q}$. That is $\frac{y_1}{y_3} \in \mathbb{Q}$. So, $y_1 R_2 y_3$. Hence R_2 transitive.

Thus R_2 is an equivalence relation.

5. (a) Let $A \in X$. Then $A \subseteq A$. Thus $A \le A$. Thus \le is reflexive.

Now let $A, B \in X$ and suppose that $A \leq B$ and $B \leq A$.

Then $A \subseteq B$ and $B \subseteq A$. Hence A = B.

Thus \leq is antisymmetric.

Now let $A, B, C \in X$ and suppose that $A \leq B$ and $B \leq C$,

Then $A \subseteq B$ and $B \subseteq C$.

Hence $A \subseteq C$.

Thus $A \leq C$.

Thus \leq is transitive.

Therefore, \leq is a partial order on X.

- (b) It is clear that {3} ≤ {4} and {4} ≤ {3} because {3} ⊈ {4} and {4} ⊈ {3}.
 Thus neither {3} nor {4} is a least element of {{3},{4}}. Also neither {3} nor {4} is a greatest element of {{3},{4}}. This completes the proof.
- 6. Let $x \in \mathbb{R} \setminus \{2\}$. Then f(x) is defined. Hence f is a function on $\mathbb{R} \setminus \{2\}$. Also $f(x) \neq -1$ because if f(x) = -1, then $\frac{2+x}{2-x} = -1$, so 2+x = -2+x, and so 4=0 is a contradiction. Hence f is a function from $\mathbb{R} \setminus \{2\}$ into $\mathbb{R} \setminus \{-1\}$.

Let $x_1, x_2 \in \mathbb{R} \setminus \{2\}$ and suppose that $f(x_1) = f(x_2)$. Thus $\frac{2+x_1}{2-x_1} = \frac{2+x_2}{2-x_2}$.

So,
$$(2+x_1)(2-x_2)=(2+x_2)(2-x_1)$$
. Thus, $4+2x_1-2x_2-x_1x_2=4+2x_2-2x_1-x_1x_2$.
Hence $4x_1=4x_2$.

Thus $x_1 = x_2$.

Hence f is an injection.

Now let $y \in \mathbb{R} \setminus \{-1\}$.

Thus
$$y+1\neq 0$$
. Hence $\frac{2(y-1)}{1+y}\in\mathbb{R}$. Also $\frac{2(y-1)}{y+1}\neq 2$, because if $\frac{2(y-1)}{y+1}=2$ then

$$y-1=y+1$$
 and hence $2=0$, which is contradiction. Hence $\frac{2(y-1)}{y+1} \in \mathbb{R} \setminus \{2\}$. Observe that

$$f\left(\frac{2(y-1)}{y+1}\right) = \frac{2 + \frac{2(y-1)}{y+1}}{2 - \frac{2(y-1)}{y+1}} = \frac{y+1+y-1}{y+1-(y-1)} = y.$$

Thus f is a surjection.

Hence f is a bijection.

7. (a)
$$f([0,\infty)) = \{f(x) : x \in [0,\infty)\}$$
$$= \{x^2 : x \in [0,\infty)\}$$
$$= [0,\infty).$$

(b) Let
$$A = \{-1\}$$
 and $B = \{1\}$.

Then
$$A \cap B = \{-1\} \cap \{1\} = \emptyset$$
.

Also
$$f(A) = \{f(-1)\} = \{(-1)^2\} = \{1\}$$
 and $f(B) = \{f(1)\} = \{1^2\} = \{1\}$.

Thus
$$f(A) = f(B)$$
.

8. i. There exists a bijection from
$$X$$
 into $\{1,2,3,4,5\}$.

ii. Define
$$h: X \cup Y \rightarrow \{1, 2, 3, \dots, m+n\}$$
 by

$$h(r) = \begin{cases} f(r) & \text{if } r \in X \\ g(r) + n & \text{if } r \in Y. \end{cases}$$

9. i. Define
$$f: \mathbb{N} \to \{\{1\}, \{2\}, \{3\}\}$$
 by $f(1) = \{1\}$, $f(2) = \{2\}$, $f(n) = \{3\}$ for each $n \ge 3$. Thus $\{\{1\}, \{2\}, \{3\}\}$ is countable.

ii. Observe that the set of even positive integers is $\{2n : n \in \mathbb{N}\}$.

Define
$$f: \mathbb{N} \to \{2n : n \in \mathbb{N}\}\$$
by $f(n) = 2n, n \in \mathbb{N}$.

Clearly f is defined on \mathbb{N} . Observe that for each $n,m\in\mathbb{N}$, f(n)=f(m) implies 2n=2m, so n=m. Thus f is one-to-one.

Also it is clear that f is onto $\{2n : n \in \mathbb{N}\}$.

Thus f is a bijection.

This completes the proof.

ii. *F*.