The Open University of Sri Lanka B.Sc/B.Ed Degree Programme Final Examination 2008/2009 Level 05 - Applied Mathematics AMU 3186/AME 5186 - Quantum Mechanics

Duration: - Two and Half Hours.

Date: - 02.07.2009.

Time: - 01.30 pm. - 04.00 pm.

Answer FOUR questions only.

- 01. Define the following: (i) Eigenvalues, Eigenfunctions, Hermitian Operator.
 - If A and B are two Hermitian operators, then show that (ii) i de la compresión de la c
 - (a) A^2 is Hermitian.
 - (b) (AB+BA) and i(AB-BA) are also Hermitian.
 - (c) If $[A, B] = i\lambda$ then λ is real.
 - what is the style like a with the If $\hat{p} = -i\hbar \frac{d}{dx}$, show that $[\hat{p}, \hat{x}] = -i\hbar$ and use the Mathematical Induction (iii) to show that $\left[\hat{p}, \hat{x}^n\right] = -in\hbar x^{n-1}$, when n is a positive integer.
 - Show that $\psi(x) = \exp(ikx)$ is an eigenfunction of the momentum (iv) operator $\hat{p} = -i\hbar \frac{d}{dx}$.
- The state function $\psi(x)$ of a particle, free to move on a straight line ox, is given by 02.

$$\psi(x) = e^{\frac{-x^2}{\Delta^2} + \frac{ipx}{\hbar}}$$

where Δ , p and \hbar are constants.

- Find the expectation values of the position and momentum of the particle. (i)
- State Heisenberg's Uncertainty principle. Find the uncertainty of the momentum and of the position of the particle.
- (iii) Verify the Heisenberg's uncertainty principle.

- 03. A particle of mass m moves in the x direction under a potential $V(x) = \frac{1}{2}m\omega^2x^2$, where ω is a positive constant.
 - (i) If \hat{H} is the Hamiltonian operator, show that $\hat{H} = \hbar\omega \left(\zeta \zeta^* + \frac{1}{2}\right),$ where $\zeta = (2m\hbar\omega)^{-\frac{1}{2}}(m\omega x i\hat{p}_x)$.
 - (ii) Obtain the following commutation relations,
 - (a) $\left[\zeta,\zeta^*\right]=-1$
 - (b) $\left[\hat{H},\zeta\right] = \hbar\omega\zeta$
 - (c) $\left[\hat{H}, \zeta^*\right] = -\hbar\omega\zeta^*$
 - (iii) Obtain the lowest eigenvalue of H.
- 04. (i) Define the expectation value of a dynamical variable represented by an operator \hat{A} .
 - (ii) A Hermitian operator \hat{A} is defined as one for which, for all normalizable functions f and g,

$$\int f^* \hat{A} g d\tau = \int (\hat{A} f)^* g d\tau.$$

Show that its expectation value is real.

(iii) The time independent Schrödinger equation is given by

$$\hat{H}\psi=i\hbar\frac{\partial\psi}{\partial t},$$

where \hat{H} is the Hamiltonian operator. Show that, if \hat{A} is Hermitian, then

$$\frac{\partial}{\partial t} \left\langle \hat{A} \right\rangle = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{A} \right] \right\rangle + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle.$$

(iv) Hence obtain Ehrenfests's Theorem for a particle moving in a potential V, $\frac{\partial}{\partial t} \langle \hat{p} \rangle = -\langle \nabla V \rangle$,

where \hat{p} is the momentum operator. Give the physical interpretation of this result..

05. A particle of mass m and energy E moves in the positive x direction and meets a barrier. The potential energy V(x) of the particle is given by,

$$V(x) = \begin{cases} 0 & ; x \le 0 \\ V_0 & ; 0 \le x \le a \\ 0 & ; x > a \end{cases}$$

- (i) Write down the equations satisfied by the wave function $\psi(x)$ in each of the three regions and state clearly the boundary conditions which need to be satisfied by $\psi(x)$.
- (ii) Find the transmission coefficient T.
- 06. Angular momentum of a particle is defined as a vector \underline{L} , such that $\underline{L} = \underline{r} \times \underline{p}$ where \underline{p} is the momentum and \underline{r} is the position vector of the particle with respect to a fixed origin O.
 - (i) Write down the Cartesian components L_x, L_y, L_z of the angular momentum operator. Hence obtain the angular momentum operator in spherical polar co-ordinates.
 - (ii) Prove the following relations for the angular momentum operator.
 - (a) $\left[L_x, L_y\right] = i\hbar L_z$,
 - (iii) If $L_{+} = L_{x} + iL_{y}$ and $L_{-} = L_{x} iL_{y}$, Prove the following results,
 - (a) $[L_z, L_+] = \hbar L_+,$
 - (b) $[L_+, L_-] = 2\hbar L_z$,
 - (c) $\left[L^2, L_+\right] = 0$.

-Copyrights reserved-