The Open University of Sri Lanka B.Sc./B.Ed Degree Programme — Level 05 Final Examination 2008/2009 Applied Mathematics

AMU 3185/AME 5185 – Electro Magnetic Theory & Special Relativity

Duration: - Two and Half Hours.

Date: - 14.07.2009

Time: - 10.00 a.m. - 12.30 p.m.

Answer FOUR Questions only.

01.(a) State the Coulomb's Law.

- (b) A uniform electric field of 5000 NC⁻¹ exists in the region between two oppositely charged parallel plates.
 - (i) What is the force on an electron in this region?
 - (ii) What is the acceleration of an electron when acted on by this force?
- (c) Find the centripetal acceleration of the electron in a circular orbit about the proton in the hydrogen atom.

(Assume that the mass of electron is $m = 9.1 \times 10^{-31} kg$, the charge of electron is $e = 1.6 \times 10^{-19} C$ and the radius of the orbit of electron is $r = 5.3 \times 10^{-11} m$).

- (b) Find an expression for field-intensity \overline{H} at the centre of a circular wire of radius a carrying a current I in the anti-clockwise direction on XY plane.
- (c) Two narrow circular coils P and Q have a common axis and placed 10 cm apart. Coil P has 10 turns of radius 5 cm with a current of 1A passing through it. Coil Q has a single turn of radius 7.5 cm. If the magnetic field at the centre of the coil P is to be zero, what current should be passed through coil Q?

03. (a) State the Gauss's theorem.

- (b) A rectangular plane surface of width w and length l is placed with edges parallel to the x and y axes respectively. The electric field \underline{E} is everywhere parallel to the z axis and its magnitude is given by E = (ax b).
 - (i) Calculate the flux through the surface.
 - (ii) Show that the total flux through the surface is given by $\phi = wl\left(\frac{al}{2} b\right)$.

(c) A spherical charge distribution of radius a is given by

$$\rho = \begin{cases} \rho_0 \left(1 - \frac{r}{a} \right) & for \quad r \le a \\ 0 & for \quad r > a. \end{cases}$$

Calculate,

(i) total amount of charge,

(ii) the electric field through at a point distant r from the centre

(a) outside

and

(b) inside

the charge distribution.

- 04. (a) Briefly explain the capacitance of a capacitor and derive the formulae of the resultant capacitance of the capacitors when they connect by series and parallel.
 - (b) Two rectangular metal plates, each $10cm \times 20cm$, are placed parallel to each other with a spacing of 2 mm. One plate is earthed. Find the capacitance of this arrangement.
 - (c) A $20\mu F$ capacitor is charged to a potential difference of 1000 volts and is disconnected from supply. Its terminals are then connected to those of an uncharged $10\mu F$ capacitor. Find the resulting potential difference across the common terminals of two capacitors.
- 05.(a) State the basic postulates of special theory of relativity and with the usual notation derive the Lorentz transformation equations.
 - (b) Prove that the results of two successive Lorentz transformations is a Lorentz transformation.
 - (c) Let u and u' are the velocities of a particle in two inertial systems S and S' respectively. Initially S and S' coincide and S' has the velocity v relative to S in x-direction.

Show that
$$u^2 = \frac{u'^2 + v^2 + 2u'v\cos\theta - \left(u'\frac{v}{c}\sin\theta'\right)^2}{\left(1 + \frac{v^2}{c^2}u'\cos\theta'\right)^2},$$

where θ' is the angle which u' makes with x-axis and c is the velocity of light.

06.(a) State Ohm's Law and Kirchhoff's Laws.

- (b) Referring the following circuit diagram, find(i) the current delivered by the source,(ii) its terminal potential difference,

 - (iii) the current in 10α resistor.

Copyrights Reserved