

The Open University of Sri Lanka B.Sc./B.Ed Degree Programme - Level 054 Final Examination 2008/2009 Burney or a Brown Applied Mathematics AMU 2185/AME 4185 - Numerical Methods I

Duration: - Two and Half Hours.

Date: - 03.07.20089

Time: - 10.00 a.m.- 12.30 p.m.

Answer 4 Questions Only

- (1) (a) Briefly explain the following
 - (i) Absolute error,
 - (ii) Relative error,
 - (iii) Truncation error.
 - (b) The Maclaurin expansion for e^x is given by

The Maclaurin expansion for
$$e^x$$
 is given by
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} e^{\varepsilon}, \text{ where } 0 < \varepsilon < x$$

Find n such that the series determines x=1 correct to eight significant digits.

(c) The criterion for a pass in a certain exam is that the average mark should not be less than 40 marks. Is a candidate who gets an average of 39.5 entitled for a pass? Give reasons for your answer

If the 40 in the criterion is changed to 40.0, what happens to the particular candidate?

- (2) (a) Let $f \in [a,b]$ and suppose f(a)f(b) < 0. Show that the method of bisection generates a sequence $\{x^{(n)}\}$ approximating the solution, x^* with the property $\left|x^*-x^{(n)}\right| \leq \frac{1}{2^n}(b-a), n\geq 1$ where n is the number of iterations.
 - (b)Estimate the number of iterations that will be required to find the solution of $\sqrt{x} = \cos x$ in the interval [0,1] correct to 2 decimal places by the method of bisection.
 - (c) Find the real root correct to 2 decimal places of the equation $\sqrt{x} = \cos x$ in the interval [0,1] by using the method of Bisection.

- (3) (a) (i) What is the geometric interpretation of the Newton's formula for solving f(x) = 0.
 - (ii) With the usual notation prove that the condition for convergence of the Newton's method is $|f(x^*)f''(x^*)| < |f'(x^*)|^2$; Where x^* is the solution.
 - (b) Newton's method for solving the equation f(x) = c, where c is a real valued constant is applied to the function.

$$f(x) = \begin{cases} \cos x & when |x| \le 1\\ \cos x + (x^2 - 1)^2 & when |x| \ge 1 \end{cases}$$

For which c is $x_n = (-1)^n$; when $x_0 = 1$ and the calculation is carried out with no error?

- (c) Discuss the advantages and disadvantages of using Newton's method?
- (4) (a) Discuss the convergence of the simple iterative method.
 - (b) The equation $x^2 + ax + b = 0$ has two real roots α and β show that the iteration method, $x_{k+1} = -\frac{(ax_k + b)}{x_k}$ is convergent, near $x = \alpha$ if $|\alpha| > |\beta|$
 - (c) The equation x = f(x) is solved by the iteration method, given by $x_{k+1} = f(x_k)$. The solution is required with a maximum error not greater than 0.5×10^{-4} . The computed first and second iterates are given by; $x_1 = 0.50000$ and $x_2 = 0.52661$. How many iterations must be performed further if it is known that $|f'(x)| \le 0.53$ for all values of x.
- (5) (a) With the usual notation obtain the followings.

(i)
$$\Delta - \nabla = \Delta \nabla$$

(ii)
$$\Delta + \nabla = \left(\frac{\Delta}{\nabla}\right) - \left(\frac{\nabla}{\Delta}\right)$$

(iii)
$$\frac{1}{2} (E^{1/2} + E^{-1/2}) = \frac{2 + \Delta}{2\sqrt{1 + \Delta}} = \frac{2 - \nabla}{2\sqrt{1 - \nabla}}$$

(b) Complete the following difference table

<i>x</i>	y	first divided Differences	Second divided Differences	Third divided Differences	Fourth divided Differences
1.0	0.7651977				
1,3		*************			
1.6	0.4554022	-0.5489460	-0.108733	39	
1.9		****************	***********		
2.2	0.1103623	-0.5715210	0.011818	3 0.0680685	0.0018251

- (c) Using Newton's forward difference formula, find the interpolating polynomial which fits best for the given data.
- (6) (a) Let $x_0, x_1, ... x_n$ be distinct numbers in the interval [a, b] and $f \in c^{n+1}[a, b]$. Then prove that for each x in [a, b]. A number $\varepsilon(x) \in [a, b]$ exists such that $f(x) P_n(x) = \frac{f^{n+1}(\varepsilon(x))}{(n+1)!} \pi(x) \text{ where } P_n(x) \text{ is the Lagrange's interpolation}$ polynomial of degree n and $\pi(x) = (x x_0)(x x_1)...(x x_n)$.
 - (b) Show that the truncation error of quadratic interpolation in an equidistant table is bounded by $\left(\frac{h^3}{9\sqrt{3}}\right)\max|f'''(\varepsilon)|$; where h is the step size of the equidistance table.
 - (c) We want to set up an equidistant table of the function $f(x) = x^2 \ln x$ in the interval $5 \le x \le 10$. The function values are rounded to 5 decimals. Find the step size h which is to be used to yield a total error less than 10^{-5} on quadratic interpolation in this table.