

THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF ENGINEERING TECHNOLOGY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING BACHELOR OF SOFTWARE ENGINEERING ECX5265 – SOFTWARE CONSTRUCTION

Date: March 13, 2012

Time: 1400 - 1700 hrs

Important:

- 1. This question paper consists of seven questions.
- 2. Answer all questions in Part A (60 marks) and TWO from Part B (40 marks).

Part A

Consider the following description of a compiler to answer Q1 to Q3.

The following "simple integer expression" grammar is used to do some basic arithmetic operations (only \times , +, -) with standard precedence level for one digit integers. As examples, this grammar produces such forms as 3, (5+8) and 2+3×4-1.

 $exp \rightarrow exp \ addop \ term \mid term$ $addop \rightarrow + \mid term \rightarrow term \ mulop \ factor \mid factor$ $mulop \rightarrow \times$ $factor \rightarrow (exp) \mid number$

$factor \rightarrow (exp) \mid number$	
Q1	
(a) What are the terminals and the non-terminals in this grammar?	[02]
(b) Define the token table for this compiler.	[03]
(c) Briefly explain how the lexical analyzer would process an input string of this language.	[05]
(d) Write the stream of tokens generated by the lexical analyzer for the inpurstring (5+8).	[02]
Q2	
(a) Explain why the grammar is not LL(1).	[02]
(b) Convert this grammar into LL(1).	[04]
(c) Construct FIRST and FOLLOW sets for the above (b).	[16]
(d) Show that the resulting grammar in (b) is LL(1).	[04]
(e) Construct the LL(1) parsing table for the resulting grammar in (b).	[10]

Q			
	- •	What is the <i>context handling</i> in this compiler?	[02]
	(b)	Define the instructions for the code generation phase of this compiler. Assume a stack-based (post-fix) system.	[05]
	(c)	By using the instructions in (b), write the result of the code generation phase when the input string is: 2+3×4-1	[05]
		<u>Part B</u>	
Q	4		
	(a)	Draw NFA for the regular expression $(10)^*(01 1^*)$.	[05]
	(b)	Convert the NFA obtained in (a) to a DFA.	[15]
Q	5	Consider the grammar.	
		$E \longrightarrow BA$	
		$A \rightarrow \&BA \mid \varepsilon$	
		$B \rightarrow TRUE \mid FALSE$	
		; Where E , A , B are non-terminals and others are terminals.	
	(a)	Derive the string: TRUE & FALSE & TRUE	[02]
	(b)	Define the Chomsky Normal Form (CNF) for CFGs.	[02]
	(c)	Convert the given grammar into CNF.	[14]
	(d)	Derive the above string in (a) using your new grammar in (c) {Clearly indicate whether you use leftmost or rightmost derivation when answering (a) and (d)}	[02]
Ç	6	Consider the following grammar. $S \to aSb \mid ab$	
	(a)	Find the LR(1) sets of items.	[80]
	(b)	Compute the LR(1) parsing table (Action - Goto) for the corresponding shift-reduce parse engine.	[08]
	(c)	Show the parsing steps (Input - Action) for the string: aabb	[04]

Q7 A Turing Machine accepts only the strings of the form $a^n b^n c^n$ for (n > 0) and the blank symbol B.

(a) Draw the transition graph. [14]

(b) List the moves made for input aabbcc using instantaneous descriptions. [6]