The Open University of Sri Lanka B.Sc./B.Ed. Degree Programme-2010/2011 Pure Mathematics-Level 04 Final Examination Sequences and Series-PUU2140

Duration: Two Hours

Date: 21.12.2010 Time: 9.30am-11.30am

Answer Four questions Only

- 1. (a) State the ε N definition of limit of a sequence. Using the definition show that $\lim_{n\to\infty} \frac{n^3+2}{2n^3+7} = \frac{1}{2}$.
 - (b) Show that the limit of a convergent sequence is unique.
 - (c) Show that a convergent sequence is bounded.

The Fibonacci numbers are recursively defined by $x_1 = 1, x_2 = 1$, and $x_n = x_{n-1} + x_{n-2}$ for all n > 2. Show that the sequence of Fibonacci numbers $\{1, 2, 3, 5, \ldots\}$ does not converge.

2. (a) Let $\langle a_n \rangle$ be a monotone increasing sequence that is bounded above. Show that the sequence $\langle a_n \rangle$ converges.

Let $a_n = \sum_{k=0}^n \frac{1}{k!}$ converges for $n \in \mathbb{N}$. Show that the sequence $\langle a_n \rangle$ is convergent.

(b) Find $\lim_{n\to\infty} a_n$ where $\langle a_n \rangle$ is defined by

$$a_1 = 2$$

 $a_{n+1} = \frac{1}{2}(a_n + 6)$ for all n>1.

3. (a) State the definition of a Cauchy sequence. Show that every convergent sequence is Cauchy.

Let $\langle x_n \rangle$ be a sequence defined by

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 for all $n \in \mathbb{N}$.

Show that $\langle x_n \rangle$ is not a Cauchy sequence.

Is it convergent?

- (b) Let $\langle x_n \rangle$ be a bounded sequence in $\mathbb R$ and $l \in \mathbb R$. Prove that $\lim_{n \to \infty} x_n = l$ if and only if $\limsup x_n = \liminf x_n$.
- 4. (a) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ convergent series. Show that $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$.
 - (b) Let $\alpha \in \mathbb{R}$. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converges if and only if $\alpha > 1$.

Show that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges where as $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ converges.

- (c) State and prove the Comparison Test.
- 5. (a) Determine whether each of the following series converges. In each case, justify your answer.

(i)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + n + 1}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^3 + n + 1}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!}$$

(iv)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n} + \log(\sqrt{n} + 1)}$$

(b) What does it means to say that a series is conditionally convergent? Suppose that the series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent, and that sequences $\langle b_n \rangle$ and $\langle c_n \rangle$ are defined as follows:

$$b_n = \max(a_n, 0) = \frac{1}{2}(a_n + |a_n|)$$

$$c_n = \min(a_n, 0) = \frac{1}{2}(a_n - |a_n|).$$

Prove that $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ both diverge.

06. (a) Show that the following series converges for any a > 1:

$$\sum_{n=1}^{\infty} \frac{n}{\left(n^2+1\right)\left(\log\left(n^2+1\right)\right)^a}.$$

(b) Determine the values of the real number x for which the following series converges:

$$\sum_{n=1}^{\infty} \frac{nx^n}{n^2 + 2}.$$

(c) Suppose that $a_n \ge 0$ and that the series $\sum_{n=1}^{\infty} a_n$ diverges. Prove that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$

also diverges.