

Duration: - Two Hours

Date: - 17-12-2010.

Time: -1.30 p.m. -3.30 p.m.

Answer Four Questions Only.

1. (a) Derive the equations to fit straight line model to the data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ by method of least square.

(b) The height H and the quantity Q of water flowing per second are related by the law $Q = CH^n$, where C and n are constants. The quantity of water Q for seven different height H are presented in the accompanying table.

H(ft)	1.2	1.4	1.6	1.8	2.0	2.2	2.4
$Q(ft)^3$	4.2	6.7	8.5	11.5	14.9	23.5	27.1

- (i) Using least squares fitting, estimate the values of C and n?
- (ii) Write down the model. Hence estimate the value of Q corresponding to H=3ft.
- 2. (a) Derive Euler's method to find solutions of the first order differential equation $\frac{dy}{dx} = f(x, y) \text{ under the initial condition } y(x_0) = y_0.$
 - (b) Hence, solve the differential equation $\frac{dy}{dx} x^2 = y^2$, subjected to the initial condition y(0) = 1. Assume h = 0.05. Round your results for the appropriate number of decimal places at x = 0.05 and x = 0.10.

- 3. (a) With the usual notation prove the Simpson's rule.
 - (b) Prove that the truncation error E in using Trapezoidal rule for the integral $\int_{a}^{b} f(x) dx$ is given by $E = \frac{-(b-a)h^{2}}{12} f''(c)$; where $c \in (a,b)$ and $h = \frac{b-a}{n}$.
 - (c) A car laps a race track in 84 seconds. The speed of the car at each 6 seconds interval is determined using a radar gun and given from the beginning of the lap in m/s. The records are as follows:

Time(s)	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
Speed(m/s)	124	134	148	156	147	133	121	109	99	85	78	89	104	116	123

Find the track length by using

(i) Trapezoidal rule

- (ii) Simpson's rule
- 4. (a) Write down to fourth order Runge Kutta method to find an approximate solution to the differential equation $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Use fourth order Runge –Kutta method to solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 2x}{y^2 + x}$, subject to the initial condition y(0) = 1 with h = 0.1. Hence find the value of y at x = 0.1, 0.2, 0.3. Use the order of the error term to round your results for the appropriate number of decimal places.
- 5. (a) Use Newton forward difference formulae to obtain the value of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.3. The values of x and y given below.

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- (b) Construct the difference table to check the following sequence of data and find the correct error in the list.
 - 1, 2, 4, 8, 16, 26, 42, 64, 93

- 6. (a) Write down the n^{th} order Lagrange's interpolation polynomial P(x) for the data $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.
 - (b) With the usual notation, prove that the error of interpolation of Lagrange's method is $\frac{\pi(x)}{(n+1)!} f^{n+1}(c), \text{ where } \pi(x) = (x-x_0) \times (x-x_1) \times ... \times (x-x_n) \text{ and c is in the smallest interval contains } x_0, x_1, ..., x_n.$
 - (c) Find the second degree Lagrange's polynomial y = p(x) for the curve $y(x) = \sin \frac{\pi x}{2}$ which takes the following values.

x_k	0	1	2
\mathcal{Y}_k	0	1	0

(d) Using part (b) and, show that $y(x) - p(x) = -\frac{\pi^2}{48} \cos \frac{\pi \mu}{2} x(x-1)(x-2)$, where μ depend on x.