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Answer Four Questions Only.

1. (a) Derive the equations to fit straight line model to the data '

(xl' Y ), (xz_ yz) seens (xnr ¥, ) by method of least square.

(b) The height H and the quantity Q of water flowing per'seéoﬁd are related by the law
Q=CH", where C and n are constants. - The quantity of water Q for seven different

height H are presented in the accompanying table.

B 12 (14 16 |18  [20 [22 |24 |
oy |4z (67 |85 |15 |149 |235 |270

(i) Using least squares fitting, estimate the values of C andn?

(if) Write down the model. Hence estimate the val.ue of O co'rresp'onding to H=3ft.

- 2. (a) Derive Euler’s method to find solutions of the first order differential equation

% = f(x,y)under the initial condition y(x,) =, .
(b) Hence, solve the differential aa-qt.\aticmﬂ'—x1 =, 'subjected to the initial condition

»(0)=1. Assume /#=0.05. Round your results for the apprbpriate number of

decimal places at x=0.05 and x= 0.10.
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3. (@) Withvthze usual notation prove the Simpson’s rule.

(b) Prove that the truncation error £ in using Trapezoidal rule for the integral

—(b-a)i?

b—a
12 )

b
J'f(x)dxis givenby E = S"(c); where ce(a,b) and h=
(c) A car laps a race track in 84 seconds. The speed of the car at each 6 seconds interval is -

determined using a radar gun and given from the beginning of the lap in m/s. The records

~ are as follows:

Time(s) 0 6 12 (18 124 |30 [36 (42 |48[54|60]66 72 [78 |84
Speed(m/s) | 124 | 134 | 148 | 156 | 147 | 133 [ 121 [ 109 |99 [ 85 | 78 | 89 | 104 | 116 | 123

Find the track length by using

(i) Trapezoidal rule (ii) Simpson’s rule

4 (a) Write down to fourth order Runge —Kutta method to find an approximate solution to the
differential equation . —Z—'}; = f(x,¥) subject to the initial condition ¥(x) =¥

| - ¥ +2x

y2 4+x

subject to the initial condition y(O) =1with #=0.1.Hence find the value of y at

(b) Use fourth order Runge —Kuita method to solve the differential equation % =

x¥=0.1,.0.2, 0.3. Use the order of the error term to round your results for the appropriate

number of decimal places.

. 2.
5. (a) Use Newton forward difference formulae to obtain the value of Q and d J; at x=1.3.

The values of x and y given below.

x 1.0 12 14 | 16 1.8 2.0 2.2

y | 2.7183 | 3.3201 | 4.0552 | 4.9530 | 6.0496 | 7.3891 | 9.0250

(b) Construct the difference table to check the following sequence of data and find the

correct error in the list.

1, 2, 4, 8, 16, 26, 42, 64, 93.
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6. ('ci) Writé down the n* order Lagrange’s -interpoiation polynomial P(x) for the data
(xnﬁyﬂ):(xlsyl):---:(xn:yn)' ) ’

(b) With the usual notation, prove that the error of interpolation of Lagrange’s method is

z(x)
(n+1D)!

interval contains x, x, ..., x,.

f™ (@), where 7(x)=(x—x)x(x-x)x..x(x-x,) and ¢ is in the smallest

(c) Find the second degree Lagrange’s polynomial y= p(x) for the curve y(x) =sinZ>
: 2

- which takes the following values.

x, 0 1
Vi 0 1 0 _

(d) Using part (b) and, show that y(x}- p(x) =—% cos%&x(x—l)(x ~2) , where pt

depend on x.




