The Open University of Sri Lanka B.Sc./B/Ed. Degree Programme-2010/2011 Closed Book Test (CBT) Pure Mathematics PUU2140-Sequences and Series

Duration: One and Half Hours

Date: 28.10.2010 Time: 4.00pm-5.30pm

Answer All Questions

1. (a) State and prove the Sandwich Theorem.

Use the Sandwich Theorem to show that the sequence $\langle a_n \rangle$ where $a_n = \frac{\sin(n)}{n} \to 0$ as $n \to \infty$.

(b) State the ε - definition of a divergent sequence.

Show that the sequence $\langle a_n \rangle$ where $a_n = \frac{n^2 + 5n}{3n + 2}$ is divergent.

- 2. Show that the sequence $\langle x_n \rangle$ where $\sum_{k=1}^n \frac{1}{k^2}$ is a Cauchy sequence.
- 3. (a) Find the limits of the following series.

(i)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right)$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(b) Use the comparison test to show that the following series are convergent.

(i)
$$\sum_{n=1}^{\infty} \frac{2n}{3n^3 - 1}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{\log n}{n}$$