AC | systems

DO # (54)

PUU2140-Sequences and Series

Duration: One and Half Hours

Date: 13.09.2010 Time: 4.00 pm.-5.30 pm.

Answer All Questions

- 1. (a) Let $a_n = \left(1 + \frac{1}{n}\right)^{n+1}$; $n \ge 1$ be the n^{th} term of a sequence. Show that $\langle a_n \rangle$ is decreasing sequence.
 - (b) Is it true that a bounded sequence converges? Justify your answer.

 Is it true that a monotone increasing sequence converges? Justify your answer.
- 2. (a) Using the definition of $\lim_{n\to\infty}$, show that $\lim_{n\to\infty} \frac{4n^2+8}{2n^2+n} = 2$.
 - (b) Prove that $\langle (-1)^n \rangle$ does not converge.
- 3. (a) Let $a_1 = \sqrt{2}$ and let $a_{n+1} = \sqrt{2a_n}$ for $n \ge 1$. Show that $\langle a_n \rangle$ is increasing and bounded.
 - (b) Prove that $\lim_{n\to\infty} \frac{1}{n} = 0$ using ε -definition of limit.

Deduce that
$$\lim_{n\to\infty} \frac{n^5 + 3n + 1}{3n^5 + 2n + 5} = \frac{1}{3}$$
.