The Open University of Sri Lanka.

B.Sc./B.Ed. Degree Programme.

Final Examination – 2009/2010.

Level 05-Applied Mathematics.

AMU 3186/AME 5186 – Quantum Mechanics

Duration :- Two and a Half Hours

Date: 23-06-2010

Time :- 1.00 p.m. -3.30 p.m.

Answer Four Questions Only

(1) The state function $\varphi(x)$ of a Gaussian wave function is given by

$$\varphi(x) = \left(\frac{a}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{a}{2}x^2\right)$$
, where a and π are constants.

- (a) Find the expectation values of
 - (i) the position x
 - (ii) square of the position
 - (iii) the momentum p
 - (iv) square of the momentum.
- (b) Show that $\Delta \varphi x \cdot \Delta \varphi p = \frac{\hbar}{2}$.
- (2) The conduction electrons in metals are held inside the metal by an average potential ν called the inner potential of the metal. For the one dimensional model given by

$$v(x) = \begin{cases} v = -v_0, & x < 0 \\ v = 0, & x > 0 \end{cases}$$

Calculate the probability of reflection and transmission of a conduction electron approaching the surface of the metal with total energy E for the case

- (a) E > 0
- (b) $-v_0 < E < 0$
- (3) Consider the Compton scattering of a photon of wave length λ_0 by a free electron moving with a momentum of magnitude P in the same direction as that of the incident photon.

(a) Show that in this case the Compton equation becomes

$$\Delta \lambda = \frac{2\lambda_0(p_0 + p)c}{E - pc} \sin^2\left(\frac{\theta}{2}\right).$$

electron energy.

where $p_o = \frac{h}{\lambda_o}$ is the magnitude of the incident photon moment, θ the scattering angle, h the plank constant, c the velocity of light and $E = (m^2c^4 + p^2c^2)^{\frac{1}{2}}$ is the initial

- (b) What is the maximum value of the electron momentum after the collision? Compare with the case P=0.
- (c) If initially the free electron move with a momentum of magnitude P in a direction opposite to that of the incident photon, show that the Compton shift becomes $\Delta \lambda = \frac{2\lambda_0(p_0 p)c}{E + pc} \sin^2\left(\frac{\theta}{2}\right).$
- (4) (i) Define the commutators of two operators A and B.
 - (ii) A, B, C and D are given operators, show the following.

(a)
$$\left[\hat{A}, +\hat{B}, \hat{C}\right] = \left[\hat{A}, \hat{C}\right] + \left[\hat{B}, \hat{C}\right]$$

(b)
$$\begin{bmatrix} \hat{A}, & \hat{B} + \hat{C} + \hat{D} \end{bmatrix} = \begin{bmatrix} \hat{A}, & \hat{B} \end{bmatrix} + \begin{bmatrix} \hat{A}, & \hat{C} \end{bmatrix} + \begin{bmatrix} \hat{A}, & \hat{D} \end{bmatrix}$$

(c)
$$\left[\hat{A}, \left[\hat{B} + \hat{C}\right]\right] = \hat{C}\left[\hat{A}, \hat{B}\right] + \hat{B}\left[\hat{C}, \hat{A}\right] = 0$$

(d)
$$\left[\hat{A}\hat{B}, \; \hat{C}\right] = \hat{A}\left[\hat{B}, \; \hat{C}\right] + \left[\hat{A}, \; \hat{C}\right]\hat{B}$$

(e)
$$\left[\hat{A}, \ \hat{B}\right] = -\left[\hat{B}, \ \hat{A}\right]$$

(iii) If $p = i\hbar \frac{d}{dx}$ and H is the Hamiltonian operator show that $\left[\hat{p}, \hat{H}\right] = -i\hbar \left(\Delta v\right)$ and use the principle of mathematical induction to show that

$$\left[\hat{p}^n, \ \hat{H}\right] = -in\hbar x^{n-1}.$$

(5) If \hat{A} is an operator corresponding to a quantum observable and $\langle \hat{A} \rangle$ is the corresponding expectation value, show that $\frac{d\langle \hat{A} \rangle}{dt} = \frac{1}{i\hbar} \langle [\hat{A}, \hat{H}] \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$, where \hat{H} is the time independent Hamiltonian for the quantum system. A Hamiltonian motion in one dimension

is $\hat{H} = \frac{\hat{p}_x^2}{2m} - q\hat{x}$, where q is a constant. For the operators \hat{r} and \hat{p}_x which denote position and momentum respectively, show that the commutators

$$\begin{bmatrix} \hat{r}, & \hat{H} \end{bmatrix} = \frac{1}{m} i \hbar \hat{p}_x$$

$$\begin{bmatrix} \hat{p}_x, \hat{H} \end{bmatrix} = i q \hbar$$

Hence, show that, if at time t = 0, $\langle r \rangle = 0$ and $\langle p_x \rangle = 0$, then $\langle \hat{p}_x(t) \rangle = qt$ and $\langle \hat{r}(t) \rangle = \frac{qt^2}{2m}$.

(6) (i) For any two operators \hat{A} and \hat{B} , show that,

$$\begin{bmatrix} \hat{A}, & \hat{B} \end{bmatrix} \hat{B} + \hat{B} \begin{bmatrix} \hat{A}, & \hat{B} \end{bmatrix} = \hat{A}\hat{B}^2 - \hat{B}^2\hat{A} = \begin{bmatrix} \hat{A}, & \hat{B}^2 \end{bmatrix}$$

- (ii) Angular momentum of a particle is defined as a vector \underline{L} given by $\underline{L} = \underline{r} \times \underline{p}$, where \underline{p} is the momentum and \underline{r} is the position vector of the particle with respect to a fixed origin O and \underline{p} is its momentum
 - (a) Write down the Cartesian components L_X, L_Y, L_Z of the angular momentum operator. Hence obtain the angular momentum operator in spherical polar co-ordinates (r, θ, π) where the coordinates axes are chosen in a standard manner
 - (b) Prove the following.

(I)
$$\left[\hat{L}_x, \hat{L}_x^2\right] = 0$$

(II)
$$\left[\hat{L}_x, \hat{L}^2\right] = 0$$