THE OPEN UNIVERSITY OF SRI LANKA

FACULTY OF ENGINEERING TECHNOLOGY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
BACHELOR OF SOFTWARE ENGINEERING

ECX5265 — SOFTWARE CONSTRUCTION

Date: 26 August 2014 - Time: 0930 — 1230 hrs

Importzint:

1. This question paper consists of four questions.

2. Answer all questions in Part A (60 marks) and TWO questions from Part B (40
marks). :

3. State your assumptions, if any.

Part A — Answer all questions

Refer the following article in page 3 & 4 to answer the questionﬁQl. Clearly state your
assumptions.

Wiet Mazairac, Jakob Beetz, “BIMQL - An open query language for building
information models”, Advanced Engineering Informatics, Volume 27, Issue
4, October 2013, Pages 444-456

[Q1] The given article explains the open query language for building information
models. The proposed query language 'is intended for selecting, updating and
deleting of data stored in a class model (Ifc). The production rules of the grammar
given in Listing 2 of the page 3 of the article.

(a) Draw a flow diagram for the following BIMQL statement. [20 Marks]

Select $AllDoors

Where $AllDoors.EntityType = IfcDoor

Select $AllDoorsHeights := $AllDoors.Attribute.OverallHeight
Set $AllDoors.Attribute.Description := ProductXYZ

(b) Derive the following BIMQL expression using given production rules.

- [20 Marks]
Select $AllDoors
Where $AllDoors.EntityType = IfcDoor
And $AllDoors.Attribute.Description = ProductXYZ
(¢) Define the grammar G for the BIMQL [10 Marks]

(d) Write LEX implementation syntax for token of the BIMQL. [10 Marks]

Page1of4

[Q2] The DESK grammar rules define as follows (DESK, EXPR, CONST, DEF'S, DEF

[Q3]

[Q4]

Part B — Answer only Two questions

are non-terminals and others are terminals).

DESK — print EXPR CONST

EXPR — EXPR +id | id '

CONST — where DEFS -
DEFS — DEFS DEF | &

DEF — id = int

(a) Draw a derivation tree for string: print id + id where id = int id = int

— [05 Marks]
(6) Draw a NFA for string: print id (+ id) where (id = int)’ [05 Marks]
(¢) Draw a DFA equivalent to NFA in (b) [10 Marks]

Consider the grammar rules given below (VendingMachine, STOCK, SALES,
ITEM, SALE are non-terminals and others are terminals).

VendingMachine — stock STOCK sales SALES
STOCK — STOCK ITEM | ¢

ITEM — item price qty

SALES — SALES SALE |&

SALE — item price
(a) Derive the string: stock item price qty sales item priée [02 Marks]
(b) Define the Chomsky Normal Form (CNF) for CFGs. -~ [02 Marks]
(c) Convert the given grammar into CNF. - [14 Marks]
(d) Derive the above string in (a) using new grammar in (c) [02 Marks]

(a) Briefly explains the four types of grammars with applications. [08 Marks]

(b) Draw a diagram and briefly explain the compilation phases by giving

examples for each phase. [12 Marks]

Page 2 of 4

1o yields
ligin'is &
E'iry striny
“bgin imp
Asap
ented: T

cProduc

BIMQL ::= select
)EF select .:= ‘Select’ VARIABLE where? cascade* set?
cascade = ‘Select’ VARIABLE ¢:=¢ VARIABLE (.Attribute.’ STRING | ‘.Property.’
STRING) where?
where = ‘Where’ statement
set = Set’ VARIABLE ‘.Attribute.’ STRING :=° (INTEGER | REAL | STRING)
statement = relation (‘And’ relation | ‘Or’ relation)*
relation = relationleft (‘=° relationright | ¢/=° relationright | ‘<° relationright
| “<=¢ relationright | >=¢ relationright | “>¢ relationright)
relationleft = (VARIABLE f.EntityType’ l VARIABLE f.Attribute.’ STRING I VARIABLE
: ¢.Property.’ STRING | VARIABLE PLUGIN)
relationright ::= (INTEGER | REAL | STRING)
VARIABLE c:= %’ STRING
PLUGIN 1= ‘17 STRING
INTEGER = ‘9..97+
REAL : INTEGER+ (“.° INTEGER+)?
STRING s (48..97 | ALZ? | fanazt | ow | e | | e o)|
€x3 | [! (’: ' €2 l [| <y l €. } f;)]:<r I ¢ I (%4 ' €3
] — l L) ‘) I r@; | 1_:)+

ving

i

W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456 - =

Listing 2. Backus-Naur form of the proposed BIMQL query language.

W{SelectH VERIABLE h"; where
L

Select ?Everything

Fig. 2. Syntax diagram of the ‘select’ statement along with a BIMQL example selecting all entities of a model.

»—(Where}——i statement }«N

Select ?AllDoors
Where ?AllDoors.EntityType = IfcDoor

] Select}—{ VARIZBLE

. VARIABLE

Attribute.)—-* STRING

Select ?AllDoors
Where ?AllDoors.EntityType = IfcDoor

.Propenv.)——@ STRING l»«

| S—

Select ?AllDoorsHeights := ?AllDoors.Attribute.OverallHeight

Select ?AllDoors
Where - ?AllDoors.EntityType = IfcDoor
Set ?AllDoors.Attribute.Description := ProductXYZ

Fig. 3. Flow diagrams and illustrative examples of ‘where’, ‘select’ and ‘set’ rules.

‘ yie}ds performance enhancements esp. on larger models. The
ginis triggered by the ‘' colon character, after which an arbi-
y string is identifying the keyword associated with a specific
2in implementation.

s a proof of concept, two such plugins have been imple-
t?di The “storey plugin” allows to filter building elements by
ding storey by going through the ‘IfcRelContainedInSpatial-
Icture’ objectified relationship instances of the model and look-
whether the ‘RelatingStructure”s associated with an object
Product) name matches with the right-hand side. The “is-a

plugin” (Listing 3) allows for a natural-language selection of build-
ing objects. It uses the ISO 12006-3:3-based buildingSMART Data
Dictionary (bsDD) [53] to map natural language names to IFC en-
tity definitions: The ‘IfcDoor" class ‘has been associated:as one of
the names of a concept (IfdSubject) which has the .name *door”
in the language “International English” as one of its names. The
plugin implements a cached reverse-lookup that allows to retrieve
names of the same concept in other languages (“Tar", “Deur”,
“Dor” etc.) and matches them with the right-hand side of the
where statement. This allows for natural language selections of

Page 3 of 4

W. Mazairac, J. Beetz/Advanced Engineering Informatics 27 (2013) 444-456 - -

| relation

»-1§ relation

Select ?AllDoors
Where ?AllDoors.EntityType = IfcDoor
And ?AllDoors.Attribute.Description = ProductXYZ

Fig. 4. Syntax diagram and illustrative example of the ‘relation’-rule and its
combinations.

VARIABLE |-+{ " EntityType’
VARABLE [+ ‘Attribute.” }-+| STRING
VARIABLE |+ “Property. }-+{ sRiNG

VARIABLE [-+{ PLUGIN

Fig. 5. ‘relationleft’-rule syntax diagram.

objects. The following examples selects all IfcDoors (searched for
by its Dutch word “Deur”) and IfcWindows (searched for by its
French term “fenétre”) that are either on the first or second floor
(searched for by the German names provided in the particular
model.

Notice how the storey plugin can be triggerd by differerit key-
words “Storey” (English) and “Verdieping” (Dutch), as an arbitrary
number of keywords can be provided by a plugin registered into
the query engine implementation at runtime. More details on the
implementation of the extension mechanism can be found in Sec-
tion 4.

3.7. ‘Relationright’-rule

The ‘relationright'-rule (Fig. 6) for the assignment of a compar-
ison can be any string. If the string is numeric, it will be automat-
ically compared with property definitions of simple and derived
types provided in the property such as REAL, INTEGER or [fcPosi-
tiveLengthMeasure through automatic casting.

It is also possible to specify patterns by using asterisks, question
marks and other terms familiar from regular expression terms [54].
The underlying functionality will try to match the pattern with the
value the ‘relationleft’-rule returns. These patterns make is possi-
ble to‘e.g. return both ‘OverallHeight' and ‘OverallWidth' attributes

~of an IfcDoor by querying for ‘Overall+ or return the ‘SecurityRat-
ing’, . ‘FireRating’ and ‘AccousticRating’ properties form the
PSet_Door_common in one go by asking for ‘«Rating’

3.8. Shortcuts

The introduction of shortcuts serve as an illustration as to why a
domain specific language that provides syntactic simplifications
compared with a general. purpose language is useful for complex
models such as the IFC. The relation of an entity (IfcSpace in this
example) with its properties that go beyond the few direct attri-
butes (Listing 4) defined in the core schema constitutes a complex
sub graph (Fig. 7). This requires several graph network ‘hops' or
: nested iterations in procedural programming approaches and
nested joins in traditional SQL based query languages.

. The BIMQL-code in the above row of Listing 5 shows how BIM-
QL can be used to navigate the traditional graph-connection. Seven
lines of code are needed. The first two lines select an object and the

Select ?varl Where ?Varl:Storey = Obergeschoss
Or ?Varl:Verdieping = Erdgeschoss
And ?Varl:is-a = Deur
Or ?Varl:is-a = fenétre

Listing 3. Natural language in a BIMQL query.

other five lines are required tg retrieve the ‘volume’-property «
that object. When the property shortcut is used (lower part) thos
five lines which were needed first are replaced by only one line.

In Section 1.1 the IFC model specification and specifically th
concept of objectified relationships have been introduced. Object.
fied relationships could be a starting point for additional shortcut;
The next example, in which the boundary object for a given spac
are retrieved from the model (Listing 6) illustrates this principle. ,
space is related to its boundaries by the ‘IfcRelSpaceBoundary'
entity.

By introducing a new shortcut, based on the ‘IfcRelSpaceBoun
dary'’-entity and named ‘SpaceBoundary’, the query not only. be
comes one line shorter, but also more comprehensible (Listing 7)

4. Implementation

The bimserver.org platform [16] already provides some mean:
to extract partial building information models from a repository
These models can be downloaded after which they can be viewec
or edited. An altered partial model can be uploaded to the servei
again on which it will be merged with the original model still pres-
ent. Selections on individual model revisions can be made by spec-
ifying object IDs (including revision and ‘authoring information),
the IFC GUID, or all instances of a selected entity in the IFC schema:
It is also possible to create custom-queries by writing Java code
which can be compiled and loaded during the runtime of the ser-
ver, however the threshold to actually use this feature is high
and the learning curve steep. In order to overcome this high entry
threshold and because the bimserver.org is an accessible open
source project we have chosen to integrate the proposed query lan-
guage as a Domain Specific Language (DSL) that wraps. the under-
lying querying mechanisms and hides the low-level technicalities
from end-users. Next torthe possibility to write Java code, the bim-
server.org platform will be extended, so it will be possible to write
BIMQL code.

The Model Driven Architecture (MDA) approach of software
engineering is one of the architectural cornerstones of the bimserv-
er.org framework. Instead of developing the source code itself, the
programmer develops a model, which is used for automatically
generating the source code. Although it increases the initial plan-
ning and writing resources required to produce the system that
automatically generates source code from a model, this method in-
creases portability, productivity and cross-platform interoperabil-
ity. First the EXPRESS schema is converted to an Eclipse
Modeling Framework (EMF) model. This model is then used to

INTEGER

REAL

‘e——

STRING ~

Fig. 6. ‘Relationright’-rule syntax diagram.

Page 4 of 4

