The Open University of Sri Lanka B.Sc/B.Ed. Degree Programme Final Examination - 2011/2012 Applied Mathematics-Level 05 APU3240 – Numerical Methods



Duration:- Three hours.

Date: -23.12.2011

Time: - 1.30p.m.-4.30p.m.

Answer Five Questions only.

- 1. (a) Find the maximum relative error of  $u = \frac{3x^2y^2}{z}$  at x = y = z = 1, when the error in x, y and z are  $\delta x = \delta y = \delta z = 0.01$  respectively.
  - (b) (i) Construct an iterative scheme that satisfies the condition for convergence to solve the equation  $1 + \ln x \frac{x}{2} = 0$ .
    - (ii) Estimate the number of iterations that will be required to find a solution for the above equation, correct to 2 decimal places, by means of your iterative scheme in (i). Hence find the root of the equation.
- 2. (a) Given a set of data in the form  $(x_i, y_i, y'_i)$ , i = 0, 1, ..., n. Write the expression for the Hermite interpolation formula.

Find the Hermite interpolation polynomial for the following data:

| x | <i>y</i> ( <i>x</i> ) | y'(x) |
|---|-----------------------|-------|
| 1 | 3                     | 0     |
| 2 | . 0                   | 1     |
| 3 | -1                    | 0     |

(b) Find the cubic spline corresponding to the interval (2, 3) from the following table

| x | 1 | 2 | 3 | 4  |
|---|---|---|---|----|
| У | 1 | 2 | 5 | 11 |

Hence compute y(2.5).

- 3. (a) Let  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$  be the given (n+1) points. With the usual notations, derive the Newton's general interpolation formula using divided differences.
  - (b) Compute the divided difference table for the following set of data generated from the function  $f(x) = \ln(x+3)$ .

| x       | -1     | -0.5   | 0      | 0.4    | 0.8    |
|---------|--------|--------|--------|--------|--------|
| ln(x+3) | 0.6931 | 0.9163 | 1.0986 | 1.2238 | 1.3350 |

Using the table, find f(x) as polynomial in x. Hence, approximate the value of  $\ln 3.5$ . Also, find the value of  $\frac{1}{3}$ .

4. (a) Write the Trapezoidal rule for the integral  $\int_{x_0}^{x_n} f(x) dx$ , when the interval  $[x_0, x_n]$  is divided into n equal subintervals.

Hence, find the approximate value of  $\int_{1.2}^{1.6} e^{-x^2} dx$ , with subinterval size h = 0.1.

(b) Given that the interval (a, b) is divided into n equal subintervals with each of length h and the interval (c, d) is divided into m equal subintervals with each of length k, write an expression to evaluate  $\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$ .

Hence, evaluate the approximate value of  $I = \int_{0}^{1} \int_{0}^{1} xe^{y} dx dy$  with h = k = 0.5.

- 5. (a) Write down the third order Taylor series method for an initial value problem.
  - (b) Solve the system of differential equations  $\frac{dy}{dx} = x + z$  and  $\frac{dz}{dx} = x y^2$  at x = 0.1 and x = 0.2, by using the third order Taylor series method with h = 0.1. Given that y(0) = 2, z(0) = 1.

- 6. (a) Derive Euler's method to find an approximate solution to the differential equation  $\frac{dy}{dx} = f(x, y) \text{ subject to the initial condition } y(x_0) = y_0.$ 
  - (b) Consider the initial value problem

$$\frac{dx}{dt} = \frac{x^2 + t^2}{2x}, \quad x(1) = 1.$$

Using the (i) Euler's method (ii) Modified Euler's method with step size h = 0.2, find the approximate value of x(1.6). Give your answer correct to three decimal places.

- 7. (a) Write down the fourth order Runge Kutta method to find an approximate solution to the differential equation  $\frac{dy}{dx} = f(x, y)$  subject to the initial condition  $y(x_0) = y_0$ .
  - (b) Use the fourth order Runge-Kutta method to solve the differential equation  $\frac{dy}{dx} = \frac{y^2 2x}{y^2 + x}$ , subject to the initial condition y(0) = 1 and assuming h = 0.1. Hence find the value of y at x = 0.1, 0.2, 0.3. Give your results to four decimal places.
- 8. (a) (i) Derive Picard's method to find an approximate solution to the differential equation  $\frac{dy}{dx} = f(x, y) \text{ subject to the initial condition } y(x_0) = y_0.$ 
  - (ii) Consider the initial value problem

$$\frac{dy}{dx} = 2x - y^2$$
 where  $y = 0$  at  $x = 0$ .

Applying Picard's method, finds the first three successive approximations for the above problem.

(b) A Milne's Predictor-Corrector method applied to  $\frac{dy}{dx} = f(x, y)$  is given by

Predictor: 
$$y_{n+1,p} = y_{n-3} + \frac{4h}{3} (2y'_{n-2} - y'_{n-1} + 2y'_n)$$

Corrector: 
$$y_{n+1,c} = y_{n-1} + \frac{h}{3}(y'_{n-1} + 4y'_n + y'_{n+1}).$$

where  $y'_n = f(x_n, y_n)$ .

Given 
$$y' = \frac{1}{x+y}$$
 with  $y(0) = 2$ ,  $y(0.2) = 2.0933$ ,  $y(0.4) = 2.1755$  and  $y(0.6) = 2.2493$ .

Find y(0.8) using the above Milne's Predictor-Corrector method.