The Open University of Sri Lanka

B.Sc./B.Ed. Degree Programme

Final Examination-2010/2011

APU 2144- Applied Linear Algebra and Differential Equations

APPLIED MATHEMATICS-LEVEL 04



**Duration: Two Hours.** 

Date:07.07.2011

Time: 1.30 p.m.- 3.30p.m.

## Answer FOUR questions only.

- (1) (i) Define the following:
  - (a) Minor of a matrix.
  - (b) Cofactor of a matrix.
  - (c) A non-singular matrix.
  - (ii) (a) Given two matrices B and C, what is the condition for the product BC to exist?

(b) Let 
$$A = \begin{pmatrix} 2 & -2 & 10 \\ 3 & 5 & -6 \end{pmatrix}$$
,  $B \begin{pmatrix} 1 & -3 & 0 & 4 \\ -2 & 5 & -8 & 9 \end{pmatrix}$  and  $C = \begin{pmatrix} 8 & 5 & 3 \\ -3 & 10 & 2 \\ 2 & 0 & -4 \\ -1 & -7 & 5 \end{pmatrix}$ .

Compute 3A + BC.

(iii) Using the cofactor expansion compute the determinant of the matrix

$$\begin{pmatrix}
5 & -2 & 2 & 7 \\
1 & 0 & 0 & 3 \\
-3 & 1 & 5 & 0 \\
3 & -1 & -9 & 4
\end{pmatrix}.$$

- (2) (i) Prove that a matrix and its transpose have the same eigen values.
  - (ii) Solve the following system of equations by calculating the inverse using elementary row operations.

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$x_1 + x_2 + x_3 - x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = -4$$

$$x_1 - x_2 + x_3 + x_4 = 2$$

(iii) Find the eigen values and corresponding eigen vectors of 
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
.

Determine whether the eigen vectors are orthogonal.

- (3) (i) State the Cayley-Hamilton Theorem.
  - (ii) If  $A = \begin{pmatrix} 1 & 5 \\ 3 & 4 \end{pmatrix}$ , express  $A^4 2A^2 4I$  as a linear polynomial in A.
  - (iii) Diagonalise the matrix  $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$  and hence find  $A^3$ .
- (4) (i) Find the general solution of the system of simultaneous differential equations given below.

$$\dot{x}_1 = x_1 + 3x_2 - 3x_3$$

$$\dot{x}_2 = -3x_1 + 7x_2 - 3x_3$$

$$\dot{x}_3 = -6x_1 + 6x_2 - 2x_3$$

(ii) Find a solution of the system of equations given below.

$$\dot{x}_1 + 10x_1 + 6x_2 = 6e^t$$
$$\dot{x}_2 + 6x_1 + 10x_2 = 4e^t$$

(5) (i) Find a sinusoidal solution of the following system of equations.

$$\ddot{x}_1 + 8\dot{x}_2 + x_1 = 8\sin 3t - 8\cos 3t$$
$$\ddot{x}_2 + \dot{x}_1 = -6\sin 3t - 3\cos 3t$$

(ii) Find the general solution of each of the differential equations

(a) 
$$x^3 \frac{d^3 y}{dx^3} - 4x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} - 8y = 4 \ln x$$
.

(b) 
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3$$
.

(6) Find all the eigenvalues and eigenfunctions for the following boundary value problem.

$$y'' + \lambda y = 0,$$
  
 
$$y(0) - y'(0) = 0,$$

$$y(\pi)-y'(\pi)=0$$