THE OPEN UNIVERSITY OF SRI LANKA

BACHELOR OF TECHNOLOGY HONORS IN ENGINEERING /

BACHELOR OF SOFTWARE ENGINEERING HONORS - LEVEL 04

FINAL EXAMINATION - 2015/2016

MPZ4140 / MPZ4160 - DISCRETE MATHEMATICS I

DURATION – THREE HOURS

Time: 0930hrs - 1230 hrs.

Instructions:

- Answer only six questions.
- Please answer a total of six questions choosing at least one from each section A, B, and C.
- State any assumption that you made.
- All symbols are in standard notation.

SECTION - A

01. i. Define a statement.

> Let the universe of discourse be the set of all integers. Determine the truth values of the following statements.

- a) $(\forall x)p(x)$ where p(x): $(x^2 \ge 0)$
- b) $(\forall x)q(x)$ where $q(x):(x^2-5x+6=0)$
- $(\exists x)r(x)$ where r(x): $(x^2 5x + 6 = 0)$

[30%]

- ii. Write down each of the following statements in terms of p, q and r, and logical connectives, where p: I am awake; q: I work hard; and r: I dream of home.
 - a) I am awake implies that I work hard.
 - b) If I dream of home, then I am awake and I work hard.
 - c) I am not awake if and only if I dream of home or I work hard..
 - -d) I do not work hard only if I am awake and I do not dream of home.

[20%]

iii. Let p, q, and r be three statements.

Verify that
$$[(p \lor q) \land (p \rightarrow r)] \rightarrow (q \lor r)$$
 is a tautology or not.

[20%]

iv. State the "converse" and "contrapositive" of each of the following statement:

[20%]

- a) If I like Logic, then I will study.
- b) If it snows, then he does not drive the car.
- Show that $(p \land q) \lor \sim p \equiv \sim p \lor q$, by using laws of the algebra of propositions. v. [10%]

1

o2. i. Express the following arguments into symbolic form and test the validity by using truth table: [30%]

If I was reading the news paper in the kitchen, then my glasses are on the kitchen table. When my glasses are on the kitchen table, I see my glasses.

I did not see my glasses.

Therefore glasses are not on the kitchen table and I was not reading the news paper in the kitchen.

ii. Prove that $\forall a \in \mathbb{R}, \exists b \in \mathbb{R}$ such that $a^2 + b = 5$.

[20%]

- iii. Write down the negation of the following statements:
 - a) If the teacher is absent, then some students do not complete their homework.
 - b) All the students completed their homework and the teacher is present.
 - c) Some of the students did not complete their homework or the teacher is absent [30%]
- iv. Prove De Morgant's laws for propositions by using truth tables.

[20%]

03. i. Using mathematical induction, for a positive integer *n*, prove each of the following:

a)
$$\frac{x^{n+1}-1}{x-1} = 1 + x + x^2 + \dots + x^n,$$
 [30%]

b)
$$2\sum_{r=1}^{n} r = n(n+1)$$
.

[30%]

- ii. Give an indirect proof for the followings: for any real number x, if $x^3 + 2x + 33 \neq 0$, then $x + 3 \neq 0$. [20%]
- iii. Find a counter example for the following statement is true; $\exists n \in \mathbb{N}, 7n+1 \text{ and } 7n-1 \text{ are not primes.}$
- iv. Disprove $\forall a, b \in \mathbb{R}$, if a > b, then $a^2 > b^2$.

[10%]

SECTION - B

04. i. Determine which of the following sets are finite:

[20%]

- a). $A = \{\text{month in year}\},\$
- b). $B = \{\text{positive integer less than 1}\}$
- c). $C = \{ \text{odd integer} \}$,
- d). $D = \{\text{positive integer divisors of } 12\}$

ii. Giving reasons describe the following sets:

- a) Ø
- b) {0}
- c) $\{\emptyset\}$.

[15%]

- iii. Let P, Q, and R be three sets. Without using Venn diagram, show that $P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)$. [30%]
- iv. Let $U = \mathbb{N} = \{1, 2, 3, ...\}$ be the universal set. Let $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7\}$, and $D = \{2, 4, 6, ...\}$. Find the all elements in each of the following set: A^{C} , B^{C} , D^{C} , $A \oplus B$, $A \oplus D$.

[35%]

- 05. i. Define the Cartesian product sets $A \times B$ of the sets A and B.
 a). Let $A = \{00, 01, 10, 11\}$, and $B = \{0, 1\}$. Find $A \times B$, A^2 .
 b). Find a, and b such that (3a + b, 2a b) = (11, -1).
 - ii. Let R be a relation on $A = \{1, 2, 3, 4\}$ defined by $R = \{(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)\}$. Show that R is neither reflexive, nor transitive.
 - iii. Let N be the set of all natural numbers. The relation R_1 on the set N × N of ordered pairs of natural numbers is defined as: $(a,b)R_1(c,d) \Leftrightarrow a-c=b-d.$ Prove that R_1 is an equivalence relation. [40%]
 - iv. Prove that the following relation R_2 on the set of positive integer is a partial order. $R_2 = \{(x, y) : x \mid y\}.$
- 06. i. Show that $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 8x 4 is a one to one and onto function. Find the inverse function of f.
 - ii. Define $h: \mathbb{Z} \to \mathbb{Z}$ by h(n) = 3n + 5. Show that h is not a onto function. [10%]
 - iii. Prove that $f: \mathbb{N} \to \mathbb{N}$, where $f(x) = x^2$ is a one to one function, but $g: \mathbb{Z} \to \mathbb{Z}_0^+$ where $g(x) = x^2$ is not a one to one function. [30%]
 - iv. Find the domain D of each of the following function:
 - a) $f(x) = x^2 + 2x 15$,
 - b) $g(x) = \sqrt{64 x^2}$,
 - c) $h(x) = 3/(x^2 6x + 8)$.

[20%]

iv. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions defined by $f(x) = 3x^2 + 2x$ and g(x) = 5x + 2 for all $x \in \mathbb{R}$ respectively. Find the, $f \circ g$, and $g \circ f$. [20%]

[20%]

SECTION - C

- 07. i. Given integers a, b, c and d, show that,
 - a) If a|b, and a > 0, and b > 0, then $a \le b$.
 - b) If a|b and b|c, then a|c. [10%]
 - c) if a|b, a|c, and a|d, then a|(b-2c) and a|(2b-5c+3d). [20%]
 - d) If a|b and a|c, then $a^2|b(c-b)$. [20%]
 - ii. Prove that if $n \in \mathbb{Z}^+$ and $(3n+1)|(n^2-3n+4)$, then $(3n^2+4n+1)|(2n^3-4n^2+2n+8)$. [20%]
 - iii. Show that if n is positive even integer, then $4^n 1$ is not a prime. [10%]
- 08. i. Let $a, b, c, d \in \mathbb{Z}$. Show that:
 - a). if gcd(a, b) = 1, then gcd(a + b, a b) = 1 or 2, [30%]
 - b). if gcd(a, b) = d, then gcd(a/d, b/d) = 1, [15%]
 - c). if a|c and b|c, with gcd(a, b) = 1, then ab|c. [25%]
 - ii. Find the gcd(12378, 3054), and express it as 12378 x + 3054 y by using the Euclidean Algorithm, and determine integers x_0 and y_0 of the following equation: $12378 x_0 + 3054 y_0 = 30$. [30%]
- 09.
- i. Let $a \equiv b \pmod{n}$ and c > 0. Show that $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$ [25%]
- ii. If $x \equiv y \pmod{m}$, then show that $y \equiv x \pmod{m}$. [10%]
- iii. Solve the following system of congruence:
 - $17x \equiv 3 \pmod{2}$
 - $17x \equiv 3 \pmod{3}$
 - $17x \equiv 3 \pmod{5}$
 - $17x \equiv 3 \pmod{7}$

[65%]

- Copyrights reserved -