The Open University of Sri Lanka
B.Sc/B.Ed Degree Programme
Final Examination - 2010/2011
Applied Mathematics – Level 5
AMU3186/AME5186 – Quantum Mechanics
Duration: Two hours

Date: - 09.07.2011

Time:- 1.30 p.m.-3.30 p.m.

Answer Four Questions Only.

1. (a) Show that, in the Compton effect, the electron recoil angle ϕ and the photon scattering angle θ satisfy

$$\tan \phi = \frac{\cot \frac{\theta}{2}}{1 + \frac{E}{mc^2}}$$

where E is the initial energy of the photon and the m is the rest mass of the electron.

(b) An X-ray photon of wave length 0.1mm is incident on a stationary electron. If the photon scattering angle is 30°, find the electron recoil angle. You are given that,

$$c = 3 \times 10^8 \text{ ms}^{-1}$$
 $m = 9.108 \times 10^{-31} \text{ kg}$ and $h = 6.626 \times 10^{-34} \text{ Js}$

2. Consider a particle described by a Gaussian wave packet, given in the usual notation by

$$\psi(x) = A \exp\left[\frac{-(x+x_0)^2}{8a^2}\right]$$
; where x_0 and $a(\neq 0)$ are constants.

- (a) If ψ is normalized calculate A.
- (b) Calculate $\langle \Delta x \rangle$, in the usual notation.

You may use the result $\int_{-\infty}^{+\infty} e^{-\alpha^2 y^2} dy = \frac{\sqrt{\pi}}{\alpha}$; where α is a non zero constant.

3. (a) Define Eigen values and Eigen functions of an operator.

Show that $u(x) = e^{-x^2/2}$ is an eigen function of the operator $\hat{A}\left[x, \frac{d}{dx}\right] = \frac{d^2}{dx^2} - x^2$ and find the corresponding eigen value.

- (b) Use Mathematical Induction to, show that $\left[\hat{x}^n, \hat{p}_x\right] = in\hbar x^{n-1}$, when n is a positive integer.
- (c) If $\hat{H} = \frac{\hat{p}_x^2}{2m} + \frac{1}{2}\omega^2\hat{x}^2$, then evaluate the following commutators.

(i)
$$\left[\hat{x}, \hat{H}\right]$$

(ii)
$$\left[\hat{H},\hat{p}_{x}\right]$$

where \hat{p}_x is momentum operator and \hat{H} is the Hamiltonian operator.

4. If \hat{A} is an operator corresponding to a quantum observable and $\langle \hat{A} \rangle$ is the corresponding expectation value, show that $\frac{d\langle \hat{A} \rangle}{dt} = \frac{1}{i\hbar} \langle \left[\hat{A}, \hat{H} \right] \rangle + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle$, where \hat{H} is the time independent Hamiltonian operator for the quantum system.

Prove that,

(i)
$$\frac{d}{dt}\langle \hat{r} \rangle = \frac{1}{m}\langle \hat{p}_x \rangle$$

(ii)
$$\frac{d}{dt}\langle \hat{p}_x \rangle = \langle -\nabla \hat{V} \rangle$$

When $F = -\nabla V$, show that $\langle F \rangle = m \frac{d^2}{dt^2} \langle r \rangle$.

5. A particle of mass m moves in the negative x direction, under a potential defined by,

$$V(x) = \begin{cases} V_0; x < 0 \\ 0; x \ge 0 \end{cases}$$

- (i) If the energy of the particle is $E(>V_0)$, find the wave function $\psi(x)$ for $x \ge 0$ and x < 0.
- (ii) Find the transmission coefficient T.

- (iii) Comment on the behavior on the transmission coefficient for each of the cases $E >> V_0$ and $E \approx V_0$.
- 6. Angular momentum of a particle is defined as a vector \underline{L} , given by $\underline{L} = \underline{r} \times \underline{p}$ where \underline{p} is the momentum and \underline{r} is the position vector of the particle w.r.t a fixed origin O. Write down the Cartesian components $\hat{L}_x, \hat{L}_y, \hat{L}_z$ of the angular momentum operator. Hence obtain the angular momentum operator in polar coordinates (r, θ, ϕ) .

Prove the following relations for the angular momentum operator.

(i)
$$\left[\hat{L}_x,\hat{L}_y\right] = i\hbar\hat{L}_z$$

(ii)
$$\left[\hat{H},\hat{L}_{z}\right]=0$$