THE OPENUNIVERSITY OF SRI LANKA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING BACHELOR OF SOFTWARE ENGINEERING

ECZ3161 - MATHEMATICS FOR COMPUTING FINAL EXAMINATION - 2015/16

CLOSED BOOK

Date: 04 December 2016

Time: 09.30-12.30Hrs

Instructions

- 1. Answer any five out of eight questions. All question carry equal marks.
- 2. Show all steps clearly.
- 3. **Programmable** calculators are **not** allowed.
- 4. Total marks obtaining for this examination is 100. The marks assigned for each question is in square brackets.

Q1

(a) Use Boolean algebra to prove the following equations.

[6]

- i) $AB + \overline{AC} + BC = AB + \overline{AC}$
- ii) $(\overline{AB})(\overline{A} + B)(\overline{B} + B) = \overline{A}$
- iii) $\overline{AB} + B(\overline{C} + \overline{CD}) = \overline{AB} + \overline{ACD} + BCD$
- (b) Find which of the following propositions are tautologies, contradictions or neither. [4]
 - i) $((P \to Q) \land (Q \to R)) \to (P \to R)$
 - ii) $(P \wedge Q) \wedge \neg (P \vee Q)$
- (c) Use Karnaugh maps and find minimal sum for followings.

[10]

- i) $\overline{AB} + B\overline{C} + BC + A\overline{BC}$
- ii) $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

Q2

(a) Given that
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \\ 3 & 4 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{bmatrix}$, show that $(A \ B)^T = B^T A^T$ [6]

(b) If
$$A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$
, [6]

- i) show that $A^3 = I$
- ii) Hence, find A^{-1}
- (c) Use Gauss-Jordan elimination to solve the linear system.

[8]

$$-x + 2y + 6z = 2$$

$$3x + 2y + 6z = 6$$

$$x + 4y - 3z = 1$$

(a)

- i) Find all of the angles between 0° and 360° (or between 0 and 2π radians) that satisfy the following conditional relationship. [2] $\sin x - 1 = \cos x$
- Find the exact value of $\sin(52.5^{\circ})\cos(7.5^{\circ})$. ii) [2]
- iii) Given that $sin(\theta) = 3/5$ and that $cos(\theta) = 4/5$ find $sin(2\theta)$ and $cos(2\theta)$. [2]
- (b) On the same set of axes from 0 2π , plot, [6] $y = 2\cos(\frac{1}{2}x)$ and $y = \sin(2x)$

(c)

- I) A tree stands at the top of a 5m mountain. From a point from the ground, the angle elevation of the top of the tree is 60° and from the same point, the angle elevation of the top of the mountain is 45°. Find the height of the tree.
- II) From a point A, a man observes that the angle of elevation of the summit of a hill is 30°. He then walks towards the hill for 500 m along flat ground. The summit of the hill is now at an angle of elevation of 45°. Draw a diagram and find the height of the hill above the level of A to the nearest metre. [4]

Q4

(a) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 5 & 0 \end{bmatrix}$ find matrix **X** from **X+A+B=0**. [6]

(b)

I) Show that
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is an orthogonal matrix. [4]

I) Show that
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is an orthogonal matrix. [4]

II) Show that the matrix $\begin{bmatrix} i & -3+4i & 2+i \\ 3+4i & 0 & -1-i \\ -2+i & 1-i & 4i \end{bmatrix}$ is a skew-hermitian matrix.

[4]

(c) If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
, show that $A^3 - 3A^2 - I = 0$ where I is the identity matrix of

order 3. [6] Q5

[6]

i)
$$4\sin^4\theta + \sin^2 2\theta + 2\cos 2\theta = 2$$

ii)
$$\tan 3\theta \cot \theta = \frac{(1 + 2\cos 2\theta)}{(2\cos 2\theta - 1)}$$

iii)
$$\sin^2\left(\frac{\pi}{4} + \theta\right) - \sin^2\left(\frac{\pi}{4} - \theta\right) = \sin 2\theta$$

(b) Solve
$$\sin\theta + \sin 3\theta + \sin 5\theta = 0$$
 within the rage $0 < \theta < \pi$.

[6]

(c)

i) If
$$A+B+C=\pi$$
 prove that $\sin(A+B)+\sin(B+C)=2\cos\frac{B}{2}\cos\left(\frac{A-C}{2}\right)$.

[4]

ii) Prove that
$$\sin^{-1} \frac{3}{5} + \sin^{-1} \frac{8}{17} = \sin^{-1} \frac{77}{85}$$

[4]

Q6

[8]

i)
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3x - 2}{3x^2 - x + 1} \right)$$

ii)
$$\lim_{x \to 0} \left(\frac{2\sin x - \sin 2x}{x^3} \right)$$

iii)
$$\lim_{x \to 0} \left(\frac{x + \sin x}{x - \sin 3x} \right)$$

iv)
$$\lim_{x \to 10} \left(\frac{\sqrt{x-1}-2}{x^2-25} \right)$$

(b) Differentiate the following functions with respect to x.

[6]

i)
$$e^{-2x} \sin^{2x}$$

ii)
$$\left(\frac{x \sin x}{1 + \cos x}\right)$$

(c) Find the equation of the tangent to the curve $y = \sin(3x) + 1$ at the point where $x = \frac{\pi}{3}$.

[6]

[6]

[5]

- (a) Find first derivatives of the following from first principles. Show all steps.
 - i) $x^2 + 2x + 3$
 - $x^2 \sin x$ ii)
- (b) In a laboratory, you are given a block of aluminum. You measure the dimensions of the block and its displacement in a container of a known volume of water. You calculate the density of the block of aluminum to be 2.68 g/cm³. You look up the density of block aluminum at room temperature and find it to be 2.70 g/cm³. Calculate the percent error of your measurement.

(c)

i) For the following table of values, estimate f(7.5) using Newton's backward interpolation formula.

X	1	2	3	4	5	6	7	8
y=f(x)	1	8	27	64	125	216	343	512

ii) Use Newton-Raphson method to find a root near 2, of the following equation.

$$x^3 - 2x - 5 = 0 . ag{5}$$

Q8

(a) Evaluate the following.

- $\int x(x^2-2)^4 dx$
- $\int \sin^2 2x \cos^2 2x dx$
- $\int \sqrt{1+\cos x} dx$ iii)
- (b) Find the exact value of the followings.

[6]

- $\int_{0}^{\frac{\pi}{2}} x \sin^2 x dx$ $\int_{0}^{1} x^3 \ln x dx$
- (c) Given that $I = \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$ and $J = \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx$. Show that I J = 1. Find the values of I and J. [8]