The Open University of Sri Lanka
Department of Electrical and Computer Engineering
Diploma in Technology/Bachelor of Technology - Level 03

347

ECX3231 - Electrical Circuits & Measurements

Final Examination 2005

Duration: 3 hours

Date: 08.05.2006 Time: 9.30-12.30

Answer five questions.

All questions carry equal marks

Q1

- (a) Use super position theorem to find the open circuit voltage across the impedance Z of the circuit shown in Figure Q1.
- (b) Find the Thevenin's equivalent circuit required to determine the current through the impedance Z.
- (c) Determine the maximum achievable power across the impedance Z.

- Q2 The switch S of the circuit shown in Figure Q2 is closed at t=0 and initial circuit conditions of the circuit are $V_c(-0) = 10$ V and $I_L(-0) = 0$ A
 - (a) Determine the general form of the voltage across the inductor $V_L(t)$
 - (b) Obtain an expression to evaluate the instantaneous voltage across the inductor $V_L(t)$.
 - (c) Show that the initially stored energy in the capacitor is completely dissipating through the resistor as t tends to infinity.
 - (d) Sketch the variation of voltage across the inductor without actually solving the circuit if inductance of the inductor is 100mH.

Q3 For the circuit shown in Figure Q3

- (a) Write the tie set matrix.
- (b) Write the branch impedance matrix and branch emf vector
- (c) Determine the mesh impedance matrix.
- (d) Determine the mesh emf vector.

Q4

- (a) List the observations that required to determine the Y parameters of a symmetrical T network.
- (b) Determine the ABCD parameters for the T network shown in Figure Q4.(a) in terms of Z_1 and Z_2 .
- (c) Obtain Y parameters of the above T network by using determined ABCD parameters.
- (d) Hence or otherwise, determine the Y parameters of the twin T network shown in Figure Q4.(b)

- (a) For the bridge circuit shown in Figure Q5, determine the self-inductance L_1 and resistance R_1 in terms of bridge components at the balance condition. You may follow below instructions to obtain the balance equations.
 - 1) Equate potential differences between bc to ce
 - 2) Potential difference between nodes ab is equals to nodes ade
 - 3) Voltage drop across R₄ is same as potential difference between **dec**
- (b) Select two components that causes easy convergence to the balance condition
- (c) Draw the phasor diagram indicating the voltages across each element at balance condition.

- Q6
- (a) Determine the open circuit impedance $Z(s)_{oc}$ and short circuit impedance $Z(s)_{sc}$ for the LC filter circuit shown in Figure Q6.
- (b) Determine the type and pass band of the given filter by using reactance sketches.
- (c) If inductance L is 4.77 mH and capacitance C is 0.01326 uF, find followings;
 - (i) Characteristics impedance and phase constant at 25 KHz
 - (ii) Attenuation at 5 KHz

 \mathbf{n}

D

n

- (a) List three features of a realizable driving point impedance function using L and C elements.
- (b) Partial factored form of a driving point impedance function contains a pole at origin, a pole at infinity, and a complex conjugate pair of poles. Show the configuration of the LC network corresponds to the above driving point impedance function.
- (c) Realize first Foster form of the RL impedance function Z₁(s) given below
- (d) For the Determine the first Cauer form of the driving point impedance function $Z_2(s)$ given below.

$$Z_1(s) = \underline{(2s^2+6s+1)}$$
 $Z_2(s) = \underline{(12s^4+10s^2+1)}$ $(4s^3+2s)$

Q8

- (a) Explain how the capabilities of measuring DC voltages, AC voltages, resistances, and extensions of DC ammeter range are integrated to a basic Permanent Magnet Moving Coil instrument to use it as a multi meter.
- (b) A DC voltmeter having sensitivity of 20 k Ω /V is used to measure voltage across the resistor R of Figure Q8. Determine the meter reading, if the voltmeter selector switch is positioned at 10 V.
- (c) A symmetrical square wave voltage having amplitude A (V) is applied to an average value responding ac voltmeter having a scale calibrated in terms of rms value of a sine wave. By assuming the meter rectifies any negative voltages before taking average value, calculate
 - (i) The form factor of the square wave voltage
 - (ii) The error in meter indication

