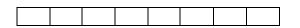
THE OPEN UNIVERSITY OF SRI LANKA B. Sc / B. Ed DEGREE PROGRAMME -2010/11 BOTANY – LEVEL 4

BOU2200 / BOE4200: PLANT PHYSIOLOGY ASSESSMENT TEST 11 (NO BOOK TEST)

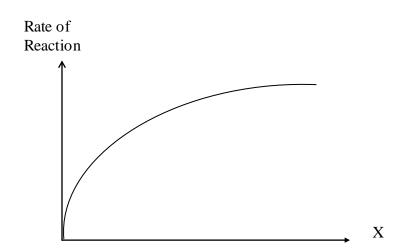
DURATION: ONE (01) HOUR


REGISTRATION NO.

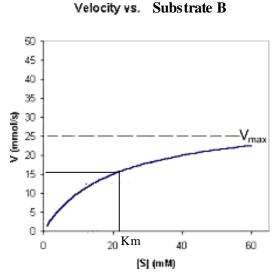
DATE: MARCH 2011	TIME: $4.00 \text{ PM} - 5.00 \text{ PM}$							
PLEASE ANSWER ALL THE QUESTIONS ON THE SPACES PROVIDED								

- 1. Which of the following is **not** a characteristic property of an enzyme?
 - a. Activity is sensitive to pH and heat
 - b. They catalyse both forward and reverse reaction
 - c. They are active in small amounts
 - d. All of them are proteins
 - e. They do not affect the equilibrium of the reaction

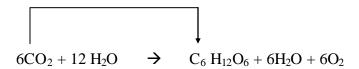
Explain the absolute specificity of enzymes briefly with an example.


3. Illustrate the mechanism of enzyme action with completely labeled diagrams.

- 4. What is the correct statement on cofactors?
 - a. There are 3 types of co-factors; metal ions, coenzymes and activators
 - b. Co-factors convert holo-enzyme into apo-enzyme
 - c. Prosthetic groups are comprised exclusively of metal ions
 - d. Organic co-factors are called co-enzymes and act as either donors or accepters of electrons
 - e. Separation of metal ions that act as co-factors does not affect the catalytic activity of the enzyme.
- 5. Given below is the graph depicting the rate of reaction with a factor 'X'. Write two possible factors that can be 'X'.


a. -----

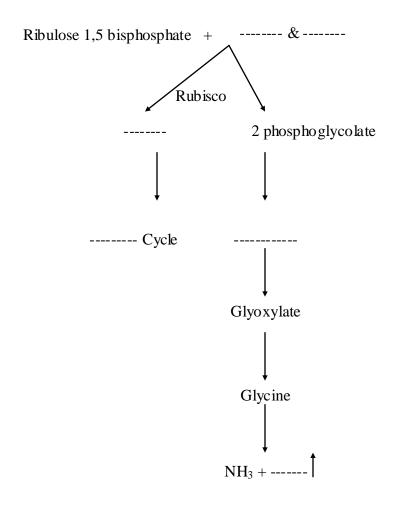
b. -----



6. Michaelis- Menton constant (Km) indicates the affinity of the enzyme to the substrate. Km is inversely proportional to the degree of affinity. Following graphs show the rate of reaction of enzyme E with two substrates; A and B. Chose the most specific substrate for enzyme E and write the enzyme catalysed reaction.

Velocity vs. Substrate A 50 45 40 35 30 25 20 15 1/2 V_{max} 10 5 0 $K_{m 20}$ 40 60 [S] (mM)

7. Photosynthesis is represented by following equation.


The above equation shows how Carbon of glucose is formed from its substrate CO₂. Similarly, indicate the origin of H and O atoms in the products of photosynthesis on the above reaction.

8. Carotenoid is accessory pigment in the photosynthesis. Write two functions of the carotenoid in higher plants.

- 9. What is the incorrect statement regarding the chroloplast?
 - a. They are surrounded by a double membrane structure
 - b. The stroma of the chloroplast is gel like material comprised of ${\rm CO}_2$ fixing enzyme
 - c. The stack of lamellae in the chloroplast is called granum which appear as green spots
 - d. The chloroplasts have well defined areas for starch and lipid accumulation
 - e. The cavity of the thylokoid is filled exclusively with protein
- 10. Define the action spectrum of photosynthesis.

11. Fill up the blanks of following biochemical pathway of photorespiration.

12. Fill up the following chart regarding C_3 , C_4 and CAM photosynthesis.

	C3	C4	CAM
Enzyme use for CO ₂ fixation			
First stable compound			
Tissue in which dark reaction takes place			
Tissue in which light reaction takes place			
Presence / absence of photorespiration			

13. Make a flow chart of nodule formation in leg <i>Rhizobium</i> bacterium.	gume	plant	ts due	to s	ymbio	osis w	ith	
14. What are the factors that affect the rate of res	spirat	ion?						