The Open University of Sri Lanka
B.Sc. / B.Ed. Degree Programme – Level 05
Final Examination – 2010/2011
Applied Mathematics
AMU 3184/AME 5184 – Dynamics

Duration:- Two Hours

Date:- 08.01.2011

Time: 1.00 p.m. - 3.00 p.m.

Answer Four Questions Only.

- 1. (a) Obtain the components of the velocity and acceleration in intrinsic coordinates, of a particle moving along a curve in a plane.
 - (b) A particle P moves on the outside of an ellipse of eccentricity e whose major axis is vertical. P starts from rest at the highest point. Show that P will leave the curve at a point where the eccentric angle ϕ is given by $e^2 \cos^3 \phi = 3 \cos \phi 2$.
- 2. (a) Show that in spherical polar coordinates, the components of the velocity and acceleration are given by $\underline{\dot{r}} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\underline{k}$ and $\underline{\ddot{r}} = (\ddot{r} r\dot{\theta}^2 r\dot{\phi}^2\sin^2\theta)\hat{r} + \left(\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta}) r\sin\theta\cos\theta\dot{\phi}\right) + \frac{1}{r\sin\theta}\frac{d}{dt}(r^2\sin^2\theta\dot{\phi})\hat{\phi}$ respectively.
 - (b) A particle moves on a smooth sphere of radius a under no forces except the reaction of the surface. If the particle is released from rest at a point with spherical polar coordinates $\theta = \beta$, $\phi = 0$. Show that its path is given by the equation $\cot \theta = \cot \beta \cos \phi$.
- 3. (a) Obtain, in the usual notation, the equation $\frac{\partial^2 r}{\partial t^2} + 2\underline{\omega} \times \frac{\partial \underline{r}}{\partial t} = -g\underline{k}$ for the motion of a particle relative to the rotating earth.
 - (b) A projectile located at a point of latitude λ is projected with speed v_0 in a Northward direction at an angle α to the horizontal. Find the position of the projectile after time t.

- **4. (a)** With the usual notation, show that the Lagrange's equations of motion for a holonomic system are given by $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) \frac{\partial T}{\partial q_j} = Q_j$, j = 1, 2, ..., n.
 - (b) A light string passes over a fixed smooth pully. It carries a mass of 8m at one end, the other end being attached to a smooth pulley of mass 4m over which passes a light string whose ends carry masses 3m and m.
 - (i) Assuming that the system starts from rest and neglecting moments of inertia of the pulleys set up the Lagrangian of the system.
 - (ii) Find the accelerations of the moveable pulley and the masses.
- 5. (a) Derive Euler's equations of motion of a rigid body rotating about a fixed point.
 - (b) If a body moves under no forces about a point O and if H is the angular momentum about O and T the kinetic energy of the body then show that H and T are conserved.
 - (c) A rigid body moves about a point O under no forces. The principal moments of inertia of a body at O being 3A, 5A, 6A. The body is initially rotated with an angular velocity $\underline{\omega} = (\omega_1, \omega_2, \omega_3)$ about the principal axes where $\omega_1 = n$, $\omega_2 = 0$ and $\omega_3 = n$. Show that any time t, $\omega_2 = \frac{3n}{\sqrt{5}} \tanh\left(\frac{nt}{\sqrt{5}}\right)$.
- 6. (a) Define the Hamiltonian H of a holonomic system and derive in the usual notation, Hamilton's equations of motion, $\frac{\partial H}{\partial p_i} = \dot{q}_i$, $\frac{\partial H}{\partial q_i} = -\dot{p}_i$.
 - (b) Show that if the position vectors $\underline{r}_i = \underline{r}_i(q_1, q_2 \dots q_n)$, $i = 1, 2, \dots N$ of the particles in terms of the generalised coordinates q_j ($j = 1, 2, \dots n$) do not involve t explicitly then H = T + V.
 - (c) Using cylindrical polar coordinates (ρ, θ, z) write the Hamilton's equations of motion for a particle of mass m moving in a force field of potential $V(\rho, \theta, z)$.