The Open University of Sri Lanka
B.Sc/B.Ed. Degree Programme
Final Examination- 2011/2012
Applied Mathematics-Level 05
APU3150/AMU3181/AME5181 – Fluid Mechanics

Duration:-Two hours

Date:-17.11.2012

Time:-9:30a.m.-11:30a.m.

Answer FOUR questions only.

1. Assuming the general form of continuity equation for a moving fluid, show that the velocity potential Φ , in irrotational motion of an incompressible fluid, satisfies Laplace's equation $\nabla^2 \Phi = 0$.

In terms of cylindrical polar coordinates (r, θ, z) , a velocity vector q has components

$$q_r = -U \bigg(1 - \frac{a^2}{r^2}\bigg) \cos\theta, \ q_\theta = U \bigg(1 + \frac{a^2}{r^2}\bigg) \sin\theta, \ q_z = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{where } U \ \text{ and } \ a = 0, \ r \geq a, \ 0 \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ a \leq \theta < 2\pi, \ \text{ and } \ \alpha < 2\pi, \ \alpha > \theta < 2\pi, \ \alpha >$$

are positive constants.

- (i) Verify that $\underline{\mathbf{q}}$ represents the velocity vector in irrotational motion of an incompressible fluid, and find the velocity potential Φ .
- (ii) Show that the equations of streamlines are given by $\left(r \frac{a^2}{r}\right) \sin \theta = b$, z = c, where b

and c are constants, and locate the points of stagnation.

- (iii) Identify the constant b and sketch the streamlines in the plane z = 0.
- 2. **Derive** Euler's equation of motion $\underline{\mathbf{F}} \frac{1}{\rho} \operatorname{grad} p = \frac{D\underline{\mathbf{q}}}{Dt}$, in the usual notation, for a perfect fluid, and deduce that the fluid is of constant density and the motion steady under no external forces, this equation can be re-written in the form $\operatorname{grad}\left(\frac{p}{\rho} + \frac{1}{2}q^2\right) = \underline{\mathbf{q}} \times \operatorname{curl}\underline{\mathbf{q}}$. Given

further that the velocity vector $\underline{\mathbf{q}}$ is given as $\underline{\mathbf{q}} = \begin{cases} \omega r \, \underline{\mathbf{e}}_{\theta} \,, & 0 \le r < a \\ \frac{\omega a^2}{r} \, \underline{\mathbf{e}}_{\theta} \,, & r \ge a, \end{cases}$

referred to cylindrical polar coordinates (r, θ, z) , where ω is a positive constant, find the vorticity vector and identify the type of motion, in each region.

If the pressure at infinity is p_{∞} , use the above equation of motion to find the pressure distribution in the region $r \ge a$.

Show that the pressure in the inner region is $p_{\infty} + \frac{\rho}{2}\omega^2(r^2 - 2a^2)$.

What is the minimum value of p_{∞} which ensures positive pressure everywhere?

[Turn over

3. Infinite inviscid liquid of constant density is acted upon by a force $\underline{\mathbf{F}} = (\lambda r^{-k})(-\underline{\mathbf{e}}_r)$, per unit mass, where λ and k are positive constants, k > 1 and r is the distance of any point P from a fixed origin O and $\underline{\mathbf{e}}_r$ is the unit vector along \overline{OP} .

Find the scalar potential Ω such that $\underline{\mathbf{F}} = -grad\Omega$, assuming that $\Omega \to 0$ as $r \to \infty$.

Initially the liquid is at rest, and there is cavity whose boundary is the sphere r=a. In the subsequent motion of the liquid the pressure remains zero both at infinity and inside the cavity. If the radius of the cavity at time t is R(t), show that the liquid velocity at point P at

time t is $\underline{\mathbf{q}} = \left(\frac{R^2 \dot{R}}{r^2}\right) \underline{\mathbf{e}}_r$, and find the velocity potential ϕ for the motion.

Using Bernoulli's equation show that the differential equation for R(t) can be written as

$$\frac{d}{dt}(R^{3/2}R) = -2\lambda$$
, when $k = \frac{3}{2}$.

By direct integration of this equation, or otherwise, show that, with this value of k, the total time taken by the liquid to fill up the cavity will be $T = a^{5/4} \sqrt{\frac{2}{5\lambda}}$.

- 4. A uniform solid sphere of mass M and radius a moves in a straight line with velocity V through an infinite liquid which is at rest at infinity where the pressure is p_{∞} . Obtain the velocity potential $\phi = \frac{Va^3}{2r^2}\cos\theta$, suitably defined spherical polar coordinates (r, θ, ω) , and establish the following results:
 - (i) The liquid in contact with points on the great circle of the surface whose plane is perpendicular to the direction of motion has a velocity $\frac{1}{2}V$, relative to the sphere.
 - (ii) The kinetic energy of the liquid is $\frac{1}{4}MV^2$, where M' is the mass of the liquid displaced by the sphere.
 - (iii) The force acting on the sphere is $F = \left(M + \frac{1}{2}M'\right)\frac{dV}{dt}$.

5. Derive the velocity potential ϕ_0 at a point P whose spherical polar coordinates are (r,θ,ω) , due to a uniform stream $-U_{\underline{i}}$, where \underline{i} is a unit vector along the axis $\theta=0$.

Show that the velocity potential ϕ_1 at point P due to an isolated doublet of vector moment

 $\mu_{\underline{i}}$ placed at the origin O, is given by $\phi_{\underline{i}} = \mu \left(\frac{\cos \theta}{r^2} \right)$, fluid being at rest at infinity.

In the fluid motion represented by the velocity potential $\Phi=\phi_0+\phi_1$, find the velocity components, and show that there is no flow of fluid across a certain spherical surface r=a, to be determined in terms of U and μ .

Taking this surface (r = a) as a rigid boundary, re-write the expressions for the velocity components, involving the constants U and a (eliminating μ).

Locate the points on the sphere where the pressure takes *greatest* and *least* values, and show that these two values differ by an amount $\frac{9\rho U^2}{8}$.

6. Find the complex potential w_1 , at a point P(z = x + iy) due to a two-dimensional uniform stream $-U_{\underline{i}}$, where \underline{i} is the unit vector along the positive Ox-axis.

Write down the complex potential w_2 , for a two-dimensional, isolated doublet of strength μ , whose axis makes an angle α with the positive Ox-axis, placed at point $P_0(z=z_0)$, when no boundary is present.

A two-dimensional doublet of strength $\mu \underline{\mathbf{i}}$ is at the point z = ia in a stream of velocity $-U\underline{\mathbf{i}}$ in a semi-infinite liquid of constant density occupying the region $y \ge 0$ as a rigid boundary. Show that

- (i) the complex potential of the motion is $w(z) = Uz + \frac{2\mu z}{\left(z^2 + a^2\right)}$,
- (ii) there are no stagnation points on the boundary, if $0 < \mu < 4a^2U$,
- (iii) pressure on the boundary is least at the origin and greatest at the point $z = \pm a\sqrt{3}$.