The Open University of Sri Lanka Department of Electrical and Computer Engineering Final Examination - 2010 ECX3230 - Electronics

Closed Book Test

Date: 04.03.2010

Time: 09.30 - 12.30

Answer any FIVE Questions

1)

- a) Briefly describe the behavior of the PN junction in biased and unbiased situations (with the help of graphs) [4]
- b) Name and draw symbols of 3 special purpose diodes and write an application of each diode. [3]

0 1 NOV 2011

c) A voltage stabilizer circuit is shown in figure 1. Maximum power dissipation of the zener diode is ¼ W.

- i) The battery is set to 15V, Calculate the current through the load and the zener current. [2]
- ii) Recalculate the i) when the battery is set to 25V. [1]
- iii) Calculate the load resistance when the zener diode is operating in maximum dissipation.[4]
- iv) Explain a modification that you suggest to operate a load that consumes about 1A

[Hint: Do not change the specifications of the given circuit. You may add an active device for the modification] [6]

2) An amplifier circuit is shown in figure 2. A Si transistor and a transformer of ratio 1:5 00193 used. Assume the maximum swing of the signal.

- a)
- i) Write the configuration of the circuit. [1]
- ii) Calculate the voltages at the three terminals of the transistor. [5]
- iii) Draw the DC load line and mark the Q point. [6]
- b) The transistor current gain is 30.
 - i) What is the biasing method used in the circuit given in figure 2?[1]
 - ii) Derive an expression for the stability factor for the circuit in figure 2. [3]
 - iii) Calculate stability factor and comment on the stability of the circuit. [4]

3)

- a) Simplify the following using Boolean algebra.
 - i) $f1 = \overline{PQR} + P\overline{QR} + P\overline{QR} + \overline{PQR} + P\overline{QR}$ [4]
 - ii) $f2 = P\overline{Q} + \overline{R}Q + PQR$ [3]
- b) Simplify the following using a Karnaugh map.

$$F(A,B,C,D) = (1, 3, 5, 7, 8, 9, 11, 12, 13) [3]$$

- c) An Operational amplifier circuit is given in figure 3.
 - i) Derive the transfer function of the amplifier. [5]
 - ii) Calculate the output voltage, if the Vin is a 2V sinusoidal signal. [2]
 - iii) Draw the output waveform with reference to the input. [2]
 - iv) Write the function of the figure 3. [1]

4)

- a) Compare and contrast the bipolar and unipolar transistors.[5]
- b) Write two applications of JFET and the operating region of these two applications.[2]
- c) The JFET amplifier is shown in figure 4 and the Input characteristics are given in figure 4.1.

- i) Write the relevant equation to calculate currents and voltages of the circuit given in figure 4.[2]
- ii) Calculate drain current and the gate source voltage. [4]
- iii) Draw the AC equivalent circuit for the given circuit in figure 4. [4]
- iv) Derive an expression voltage gain.[3]

5)

- a) Write two methods of full wave rectification and give two differences between those methods. [4]
- b) Name the basic three parts of a stabilized power supply and write the function of each part. [3]

- i) Write the rectification method of the circuit shown in figure 5. [1]
- ii) Draw the wave form at point A related to the input, when the switch1 (SW1) is on and switch2 (SW2) is off. [3]
- iii) Draw the wave form at point B related to the input, when both switches are on. [3][(Assume that initially no charge in the capacitor)

d)

- i) Derive an equation for the ripple factor for the circuit given in figure 5. [3]
- ii) Calculate the ripple factor. [1]
- iii) Give a suggestion to minimize the effect of the ripple factor. [2]
- 6) A small signal amplifier circuit is shown in figure 6. Forward current gain and the input impedance are 50 and $1k\Omega$ respectively and neglect the effect of the h_{oe} and h_{re} of the h parameter model.

- a) Draw the AC h parameter equivalent circuit for the amplifier. [5]
- b) Using above parameters derive the expressions for the amplifier in figure 6.
 - i) Current gain [3]
 - ii) Voltage gain [3]
 - iii) Power gain [3]
 - iv) Input impedance [3]
 - v) Output impedance [3]

7)

a) What are the types of multivibrators? [3]

A signal is generated using the circuit shown in figure 7.1.

b)

- i) Explain the operation of the circuit shown in figure 7.1. (Initially T_{r1} is saturated and T_{r2} is in cutoff states.) [5]
- ii) Derive an expression for the frequency oscillation of the figure 7.1 [4]
- iii) Draw the output wave form and the wave form at the base of T_{r2} . [3]
- c) Design a small circuit to generate a sawtooth signal using the above circuit in figure 7.1. [5]

8)

- a) What is the main difference between combinational logic and sequential logic? [2]
- b) Ten complimentary flip flops are connected in series to the form an electronic counter. Calculate the maximum number that the counter can memories. [2]
- c) Draw the output(Q_B) related to input signal shown in figure 8.1 [8]

Figure 8.1