

The Open University of Sri Lanka
B.Sc./ B.Ed. Degree/ Continuing Education Programme
Level-04 Final Examination-2011/2012
PUU 2142/PUE4142-Linear Algebra
Pure Mathematics

Duration: Two Hours.

Date: 11-01-2012.

Time: 09.30 a.m. - 11.30 a.m.

Answer FOUR questions only.

1. (i) Show that $\left(A^{-1}BA\right)^2 = A^{-1}B^2A$. Generalize to $\left(A^{-1}BA\right)^n$.

(ii) Let
$$A = \begin{pmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{pmatrix}$$
. Show that $|A| = (a+3b)(a-b)^3$.

(iii) Find the inverse of the matrix B where

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(iv) Find non-singular matrices P and Q such that PAQ is of the normal form,

where
$$A = \begin{pmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$
.

Hence find the rank of A.

- 2. (i) Define the consistent and inconsistent systems.
 - (ii) If there are n homogeneous linear equations in n unknowns, then prove that the system has only the trivial solution if the co-efficient matrix is non-singular.
 - (iii) Find the rank of the matrix A where

$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}.$$

(iv) Solve the following systems of simultaneous linear equations;

(a)
$$x + y + z = 1$$

(b)
$$t + x + y + z = 1$$

$$x-y+z=3$$

$$t - x - y + z = 0$$

$$x + z = k$$

$$2t + x + y - z = 2$$
.

- 3. (i) State the Cramer's Rule.
 - (ii) Use the Cramer's Rule (if applicable) to find the solutions of the following system of linear equations.

$$x + 2y - 5z + 2w = -2$$

$$3x - y + 2z + 4w = 19$$

$$2x + 3y - 4z + 3w = 6$$

$$5x + y + z - w = 3$$

(iii) Use the Cayley Hamilton Theorem to compute A^{-1} , A^{-2} , A^3 and A^4 if

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{pmatrix}.$$

- 4. (i) Let A be a matrix having eigen values λ_i where $i=1, 2, 3, \dots$ Pr ove that the matrix kA has eigen values kA, where k is a constant.
 - (ii) Diagonalize each of the following matrices and find the relevant modal matrices.

(a)
$$\begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$
 (b) $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$

(b)
$$\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$

- (iii) Find A^4 for each of the above matrices.
- 5. (i) Show that any square matrix A can be written as the sum of a symmetric matrix B and skewsymmetric matrix C.
 - (ii) Find the orthogonal transformation which transforms the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 + 2x_1x_3 - 2x_1x_2$ to its canonical form.
- 6. Solve each of the following systems by LU-decomposition.

(i)
$$2x-3y+z=1$$

 $x+y-z=0$
 $x-2y+z=-1$

(ii)
$$2x + y + 5z + t = 5$$

 $x + y - 3z - 4t = -1$
 $3x + 6y - 2z + t = 8$
 $2x + 2y + 2z - 3t = 2$