The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme/ Continuing Education Programme
Final Examination - 2011/2012
Pure Mathematics – Level 04
PMU2191/PME4191- Vector Analysis

Duration: Two hours

Date: 02.01.2012

Time: 9.30 - 11.30 am

Answer Four Questions Only.

1. (a) If $u = \ln(2x+2y) + \tan(2x-2y)$, prove that

(i)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{2}{x+y}$$
,

(ii)
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$$
.

- (b) Using chain rule find $\frac{du}{dt}$ at t = 0 for the function $u = x^2 y^2$, where $x = e^t \cos t$ and $y = e^t \sin t$.
- (c) Considering the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ show that $xz \frac{\partial^2 z}{\partial x^2} + x \left(\frac{\partial z}{\partial x}\right)^2 z \left(\frac{\partial z}{\partial x}\right) = 0$.
- (d) Find the maximum and minimum values of the function $f(x, y) = 3x^2y + y^3 3x^2 3y^2 + 2$ and determine their nature.
- 2. (a) Find the equation of the tangent plane to the surface $z = 3 + \frac{x^2}{16} + \frac{y^2}{9}$ at the point (-4,3,5).
 - (b) Using Taylor expansion of a suitable multi variable function, approximately evaluate $2.36^{2}\sqrt{5.68^{2}+4.10^{3}}$.
 - (c) (i) Find the maximum rate of change of the scalar field f(x, y) = xy + yz + zx at the point (2, -1, 1) and the direction in which this maximum occurs.
 - (ii) Obtain the rate of change of the scalar field f at the point (1,1,-2) in the direction of the vector $\underline{u} = \underline{i} + 2\underline{j} + 2\underline{k}$.

- 3. (a) Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z) = C$, where C is a constant.
 - (b) Find the unit vector normal to the surface $x^2 y^2 + z = 2$ at the point (1, -1, 2).
 - (c) If $\underline{A} = x^2 z \underline{i} 2y^3 z^2 j + xy^2 z \underline{k}$, then find $div \underline{A}$ and $Curl \underline{A}$ at the point (1, -1, 1).
 - (d) Let $\underline{F}(x, y, z)$ be a vector field and $\phi(x, y, z)$ be a scalar field. Prove that $div(\phi \underline{F}) = \phi div \underline{F} + grad\phi \cdot \underline{F}$. Hence Show that $div(\frac{\underline{r}}{r^3}) = 0$, where $r = |\underline{r}|$ and $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$.
- 4. (a) What is an irrotational vector?

 Determine the constant a, b and c so that the vector $\underline{F} = (x+2y+az)\underline{i} + (bx-3y-z)\underline{j} + (4x+cy+2z)\underline{k}$ is irrotational.
 - (b) If $\underline{F} = (2x + y)\underline{i} + (3y x)\underline{j}$, evaluate $\int_C \underline{F} \cdot d\underline{r}$ where C is the curve in the xy-plane consisting of the straight line from (0,0) to (2,0) and then to (3,2).
 - (c) Find the volume integral of the function f(x, y, z) = z + 3x 2 over the region inside the circular cylinder $x^2 + y^2 = 1$ and lying between the planes z = 0 and z = 1.
- 5. (a) State Stokes' Theorem.
 - (b) If S is any open surface bounded by a simple closed curve C and \underline{B} is any vector then prove that $\oint_C d\underline{r} \wedge \underline{B} = \iint_S (\underline{n} \wedge \underline{\nabla}) \wedge \underline{B} \, ds$.
 - (c) If $\underline{A} = (x z)\underline{i} + (x^3 + yz)\underline{j} 3xy^2z\underline{k}$ and S is the surface of the cone $z = 2 \sqrt{x^2 + y^2}$ above the xy-plane then use **Stokes' Theorem** to evaluate $\iint_{S} (\underline{\nabla} \wedge \underline{A}) \cdot \underline{n} \, dA.$
 - (d) By applying **Stokes' Theorem** to the vector field $\underline{F} = P(x, y)\underline{i} + Q(x, y)\underline{j}$ and a flat surface S in the xy-plane, bounded by the curve C, show that

$$\iint\limits_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \oint\limits_{C} \left(P \frac{dx}{dt} + Q \frac{dy}{dt} \right) dt.$$