The Open University of Sri Lanka
B.Sc/ B.Ed Degree Programme – Level 05
Final Examination - 2011/2012
Pure Mathematics
PMU3294/ CSU3276/ PME5294–Discrete Mathematics

Duration: - Three Hours

Date: - 05-01-2012.

Time: 9.30 a.m. - 12.30 p.m.

Answer FIVE Questions only.

- 01. (a) Let p and q be two statements. Use the truth tables to determine whether each of the following statements is tautology, contradiction or contingency:
 - (i) $\lceil \neg q \land (p \Rightarrow q) \rceil \Rightarrow \neg p$,
 - (ii) $(p \land \neg q) \lor (q \land \neg p)$,
 - (iii) $p \land (p \Rightarrow q) \land \neg q$.
 - (b) Write the inverse and converse of each of the following statements:
 - (i) "If the density of a fluid is not $1000 \, kg \, / \, m^3$ then the fluid cannot be water",
 - (ii) "If $\sqrt{2}$ is rational then either $\sqrt{2}$ is algebraic or $\sqrt{2}$ is transcendental".
 - (c) Let p be the statement "x is an even number" and let q be the statement "y is an odd number". Using logical connectives, write each of the following statements in symbolic form:
 - (i) "If x is an even number, then y is an odd number",
 - (ii) "x is an even number is a necessary condition to y is an odd number",
 - (iii) It is not the case that "x is an even number and y is not an odd number",
 - (iv) It is not the case that "x is an odd number only if y is an odd number",
 - (iv) "x is an even number if and only if y is an even number".

Hence write a logically equivalent statement to each of the above statements symbolically.

02. (a) Let a be any real number. Use the method of **proof by contradiction** to prove that "if $a^2 - 2a + 7$ is even, then a is odd".

Prove the same statement by the method of proof by contraposition.

- (b) Prove or disprove each of the following statements:
 - (i) Let n be an integer. If n > 4 then $n^2 > 16$,
 - (ii) For each $x \in \mathbb{R}$, $(\log_e x)^2 = \log_e x^2$,
 - (iii) There exists $n \in \mathbb{N}$ such that $(n+2)^2 (n+1)^2 = n^2$,
 - (iv) For each $n \in \mathbb{N}$, $5^{2n} + 12^{n-1}$ is divisible by 13.
 - (v) Let $a, b, c \in \mathbb{R}$. If $abc \neq 12$, then $a \neq 2$ or $b \neq 3$ or $c \neq 2$.
- 03. (a) Determine whether each of the following relations is an equivalence relation on $\mathbb R$.
 - (i) $R_1 = \{(x, y) \mid x, y \in \mathbb{R} \text{ and } |x-y| \le 1\},$
 - (ii) $R_2 = \{(A, B) | A, B \in P(\mathbb{R}) \text{ and } A \subset B\}$, where $A \subset B$ means that A is a proper subset of B and $P(\mathbb{R})$ is the set of all the subsets of \mathbb{R} .
 - (iii) $R_3 = \left\{ (x, y) | x, y \in \mathbb{R} \text{ and } x y = \frac{m}{2^n} \text{ for some } m \in \mathbb{Z} \text{ and } n \in \mathbb{Z}^+ \right\}.$
 - (b) Show that if R and S are antisymmetric relations on a given set X, then so is $R \cap S$.
 - (c) List all the partial order relations on $X = \{a, b\}$. Determine whether these are total orders.

- 04. (a) Let G be an abelian group with the binary operation *. Let $a, b \in G$ and n be a positive integer. Prove each of the following:
 - (i) $a*b^n = b^n*a$,
 - (ii) $(a*b)^n = a^n * b^n$,
 - (b) Let G be a set of all subsets of a universal set U and the binary operation * for combining sets is defined as $A*B = (A \cup B) (A \cap B)$, where $A, B \in G$. By assuming that the associative property is satisfied, show that G is a group under *.

If S is a subset of the set of natural numbers, solve the equation $\{1, 2, 4\} *S = \{3, 4\}$.

(c) Let G be the group of real numbers under addition, and let G' be the group of positive real numbers under multiplication. Show that the mapping $f: G \to G'$ defined by $f(a) = 2^a$ is a homomorphism.

Is it an isomorphism? Justify your answer.

05. (a) Let n be a positive integer greater than 2. Show that $n^2 + 1$ is a divisor of (n+1)! - n! + (n-1)!.

Deduce that $n^3 - n^2 + n - 1$ is also a divisor of (n+1)! - n! + (n-1)!.

- (b) (i) Show that among any set of 51 positive integers less than 100, there is a pair whose sum is 100.
 - (ii) A teacher is making a multiple choice quiz. She wants to give each student the same questions, but have each student's questions appear in a different order. If there are twenty students in the class, what is the least number of questions the quiz must contain?
 - (iii) If two cards are chosen at random from a standard deck of playing cards, how many different ways are there to draw the two cards if at least one card is a jack, queen or a king?

- (c) Find the number of arrangements of the letters of the word "ENGINEERING".
 - (i) In how many of them do the three E's come together at the beginning or the threeN's come together at the end of the word.
 - (ii) How many different words with 3 letters can be made by selecting letters from the above word.
- 06. (a) Let A and B be any two events in a probability space S. Prove each of the following:
 - (i) $P(A \setminus B) = P(A) P(A \cap B)$,
 - (ii) If $A \subseteq B$, then $P(A) \le P(B)$,
 - (iii) If A and B are independent events, then A^{C} and B are also independent events, where A^{c} is the complement event of A.
 - (b) A fair coin is tossed thrice. Let A be the event of obtaining 2 consecutive heads in the first two tosses and let B be the event of obtaining a tail in the third toss.
 - (i) Find $P(A \cap B)$. Are A and B independent events? Justify your answer.
 - (i) What is the probability of obtaining 2 consecutive heads in the first two tosses given that the third toss gave a tail?
 - (c) Let a die is loaded so that the probability of obtaining n points is proportional to n. Find the probability of getting an even number when rolling this die.
- 07. (a) Let G = G(V, E) be a graph of 5 vertices. By drawing the graph for each of the following sets of edges, determine whether the graph is connected:
 - (i) $E(G) = \{(x, y) | x+y \text{ is odd}\},$
 - (ii) $E(G) = \{(x, y) | xy > 5\}.$

- (b) (i) Find the largest possible number of vertices in a graph with 30 edges if all the vertices have degree of at least 3.
 - (ii) Let the graph G = G(V, E) has 5 vertices. Find the maximum number of edges in E.
 - (iii) Give an example of a graph such that every vertex is adjacent to 2 vertices and every edge is adjacent to 2 edges.
- (c) Let G be a graph with set of four vertices $\{v_1, v_2, v_3, v_4\}$, whose adjacency matrix A is given by

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}.$$

- (i) Show that G is connected,
- (ii) Is G a forest? Justify your answer,
- (iii) The subgraph H of G is defined by $V(H) = \{v_1, v_3, v_4\} \text{ and } E(H) = \{\{v_1, v_3\}, \{v_1, v_4\}, \{v_3, v_4\}\}.$ Determine whether H is a component of G. Justify your answer.
- 08. (a) A person wants to climb up a staircase. At any given stage he can only take one or two steps up.

Let f_n be the number of ways he can climb the staircase if it has n steps.

- (i) Find a difference equation satisfied by f_n and initial conditions, f_1 and f_2 , that define the sequence $\{f_n\}$,
- (ii) If the staircase has 10 steps, find the number of ways he can climb the staircase,
- (iii) Use the method of induction to show that if the staircase has n steps, then he can climb the staircase in $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$ ways.
- (b) Find the general solution of the difference equation $f(n+2)-9f(n)=n(1+3^n)$.