The Open University of Sri Lanka B.Sc. /B.Ed. Degree Programme Final Examination-2012/2013 Pure Mathematics - Level 05 PMU3295/PME5295 - Ring Theory

Duration: Three Hours

Date: 25.11.2013

Time: 9.30 a.m. - 12.30 p.m.

Answer Five Questions Only.

- 1.(a) Suppose $F = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} = \mathbb{Q}(\sqrt{2})$. Show that F is a commutative ring with unity under usual addition and multiplication.
 - (b) Prove each of the following properties for elements a and b of a ring R:
 - (i) a0 = 0a = 0,
 - (ii) a(-b) = (-a)b = -(ab),
 - (iii) a(-b) = (-a)(-b) = ab.
- 2. (a) (i) Prove that the set $U = \{a \in R \mid ab = ba \text{ for each } b \in R\}$ in a given ring R is a commutative subring of R.
 - (ii) Is the subset $S = \{n \mid n = 0 \text{ or } n \text{ is odd}\}$ of the ring $(R; +, \cdot)$ a subring? Justify your answer.
 - (b) For given subrings U_1 and U_2 of a ring R, show that their intersection $U_1 \cap U_2$ is also a subring of R.
- 3. (a) For a given element a of a ring R, the set A is defined as follows:

$$A = \{ba + na \mid b \in R, \ n \in \mathbb{Z}\}$$

Prove each of the following:

- (i) A is a left ideal of R.
- (ii) If I is any left ideal of R with $a \in I$, then $A \subset I$.
- (b) Let the ideal $I = 7\mathbb{Z}$ in the ring $(\mathbb{Z}; +, \cdot)$. Show that either A = I or $A \subset I$ if A is any ideal of \mathbb{Z} with $I \subset A$.

4. (a) Prove that a homomorphism $\phi: R \to R'$ is one—one if and only if $Ker\phi = \{0\}$.

(b) Let
$$R = (\mathbb{C}, +, \cdot)$$
 and $R' = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in R \right\}$.

The mapping $\psi: R \to R'$ is defined for $z = a + ib \in \mathbb{C}$ by $\psi(z) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that ψ is an isomorphism.

5. (a) State the First Isomorphism Theorem.

The mapping $\varphi: (\mathbb{Z}; +, \cdot) \to (\mathbb{Z}_n; +_n, \cdot_n)$, is defined by $\varphi(m) = [m]$, $m \in \mathbb{Z}$. where the binary operations $+_n$ and \cdot_n on \mathbb{Z}_n are defined as addition modulo n, multiplication modulo n respectively.

- (i) Show that φ is a homomorphism,
- (ii) Find the Kernal of φ ,
- (iii) Deduce that $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.
- (b) Show that an isomorphism between two rings is an equivalence relation.
- 6. Let $R = R_1 \times R_2$ be the direct product of rings.
 - (a) (i) Show that R has unit elements if R_1 and R_2 have unit elements.
 - (ii) Show that R is commutative if R_1 and R_2 are commutative.
 - (b) Is it true that R is an integral domain if R_1 and R_2 are integral domains? Justify your answer.
- 7. Define the terms $prime\ ideal$ and $maximal\ ideal$ in a commutative ring R with identity.
 - (a) Let I be a proper ideal of the ring R.

Prove that, I is a prime ideal if and only if the quotient ring R_I is an integral domain.

- (b) Prove or disprove the following statement:

 In a commutative ring without the identity, every maximal ideal is a prime ideal.
- 8. (a) The binary operations \oplus and Θ are defined on a set R by

$$a \oplus b = a + b - 1$$

$$a\Theta b = a + b - ab.$$

Show that (R, \oplus, Θ) is a field.

(b) If the characteristic of a field F is prime p, then show that F contains a subfield isomorphic to $(\mathbb{Z}_p; +_p, \cdot_p)$.
