The Open University of Sri Lanka B.Sc. / B.Ed. Degree Programme – Level 05 Final Examination -2012/2013 **Applied Mathematics** APU3240/APE5240 — Numerical Methods

Duration: Three Hours

Date: 31. 05. 2013 Time: 01.30 p.m. - 04.30 p.m.

Answer Five Questions Only.

- (a) Derive Newton-Raphson formula for solving the equation f(x) = 0.
 - (b) Show that Newton-Raphson method has quadratic convergence.
 - (c) Using the Newton-Raphson method, find the root lies [0.1, 0.2] of $x(1-\ln x) = 0.5$ correct up to four decimal places.
 - (d) Derive general formula to find \sqrt{N} by Newton -Raphson method where N is a positive real number. Hence find $\sqrt{12}$.
- (a) Prove that

(i)
$$\Delta = E - 1$$
,

(ii)
$$\nabla = 1 - E^{-1}$$
,

(ii)
$$\nabla = 1 - E^{-1}$$
, (iii) $\delta = E^{1/2} - E^{-1/2}$,

(iv)
$$\left[\left(\frac{\Delta^2}{E} \right) e^x \right] \left[\frac{Ee^x}{\Delta^2 e^x} \right] = e^x$$

(iv)
$$\left[\left(\frac{\Delta^2}{E} \right) e^x \right] \left[\frac{E e^x}{\Delta^2 e^x} \right] = e^x,$$
 (v) $\Delta \ln f(x) = \ln \left[1 + \frac{\Delta f(x)}{f(x)} \right],$

where Δ , ∇ , δ and E are the forward difference, the backward difference, the central difference and the shift operators respectively.

- (b) Derive the Gregory-Newton forward interpolation formula.
- (c) Hence, interpolate f(22) corresponding to the data points (20, 12), (25, 15), (30, 20), (35, 27), (40, 39) and (45, 52).

- 3. (a) (i) Derive the Newton's general interpolation formula with divided differences.
 - (ii) Hence, find the equation of degree four passing through the points (8, 1515), (7, 778), (5, 138), (4, 43) and (2, 3).
 - (b) (i) Derive the Lagrange's interpolation formula.
 - (ii) Find the Lagrange polynomial (f) passing through the points (3, 168), (7, 120), (9, 72) (10, 63) and determine f(6).
- 4. (a) Derive the Simpson's One –Third Rule.
 - (b) If the interval [a, b] is divided into 2n sub intervals then show that the error in Simpson's One –Third rule is given by $|E| < \frac{(b-a)h^4}{180}M$, where M is the numerically greater value of y_0^{iv} , y_2^{iv} y_{2n-2}^{iv} .
 - (c) Evaluate the integral $\int_0^6 \frac{1}{1+x^2} dx$, using Simpson's One third rule. Hence find an approximate value for $\tan^{-1} 6$.
- 5. (a) Using the Taylor series method, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$, with the initial condition y(0) = 0 at x = 0.1 and x = 0.2.
 - (b) Using the Taylor series method, solve $\frac{d^2y}{dx^2} + xy = 0$, with the initial condition y(0) = 1 and y'(0) = 0.5 at x = 0.1 and x = 0.2.

- 6. (a) (i) Derive formula for the Picard's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using Picard's method, find the first-three successive approximations to solve $\frac{dy}{dx} = 2 \frac{y}{x}$ with the initial condition y(1) = 2.
 - (b) (i) Derive formula for the modified Euler's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using the modified Euler's method, solve $\frac{dy}{dx} = y \frac{2x}{y}$ with the initial condition y(0) = 1 at x = 1.2 and x = 1.4 taking h = 0.2.
- 7. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Using fourth order Runge-Kutta method, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 x^2}$ with the initial condition y(0) = 1 at x = 0.2 and x = 0.4.
 - (c) Using fourth order Runge-Kutta method, solve $\frac{d^2y}{dx^2} y^3 = 0$, with the initial condition y(0) = 10, y'(0) = 50.
- 8. (a) State Milne's Predictor Corrector Method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Solve $\frac{dy}{dx} = \frac{1}{2}(1+x)y^2$, y(0) = 1, by Taylor series method for x = 0.2, 0.4, 0.6 and hence find y(0.8) by Milne's Predictor Corrector Method.