The Open University of Sri Lanka

B.Sc. /B.Ed. Degree Programme

Final Examination-2012/2013

Applied Mathematics - Level 05

AMU3182 / AME5182 - Mathematical Methods-I

Duration: - Two Hours

Date: 12th June 2013

Time: 1.00 p.m. - 3.00 p.m.

Answer Four Questions Only.

01 (a) Find the general solution of the simultaneous differential equations:

$$\dot{x}_1 = x_1$$

$$\dot{x}_2 = x_2 - x_3$$

$$\dot{x}_3 = x_2 + x_3.$$

where the dot (.) denotes the derivative with respect to a variable t.

(b) Using (a) or otherwise, write down the general solution of the following system:

$$\ddot{x}_1 = x_1$$

$$\ddot{x}_2 = x_2 - x_3$$

$$\ddot{x}_3 = x_2 + x_3$$
.

(c) Consider the first order system:

$$\dot{x} = -2tx + 3v^2$$

$$\dot{y} = -3x^2(1-y)$$

with the initial conditions x(0) = -1 and y(0) = 2.

Use Euler method with step size h = 0.1 to compute approximations for x(t) and y(t) at time t = 0.1 and t = 0.2.

02 (a) Solve each of the following problems:

(i)
$$u'(x) + u(x) = 0; \quad u(0) = 1,$$

(ii)
$$x^2u''(x) + xu'(x) + u(x) = 0$$
; $(x > 0)$, $u(1) = 0$, $u(e) = \sin(1)$,

(iii)
$$(1-x^2)u''(x) - xu'(x) + 4u(x) = 0 \ (0 < x < 1) \ u(0) = 0, u'(0) = 1.$$

- (b) Suppose $u(x, y) = f(y^2 x) + g(y^2 + x)$ is the general solution of a partial differential equation in the region y > 0. Find the particular solution which satisfies the additional conditions $u(x, y) = 1 + x^2$, $\frac{\partial u}{\partial y}(x, 1) = 2x$.
- 03 (a) Find the general solution w = w(x, y) of the partial differential equation:

$$\frac{\partial^2 w}{\partial x \partial y} - \frac{\partial w}{\partial x} = 0$$

(b) The function u(x, y) satisfies the partial differential equation:

$$3x^{2} \frac{\partial^{2} u}{\partial y^{2}} - \frac{1}{12} \frac{\partial^{2} u}{\partial x^{2}} - 6x^{2} \frac{\partial u}{\partial y} + \left(x + \frac{1}{12x}\right) \frac{\partial u}{\partial x} = 0 \ (x \neq 0).$$

- (i) Classify the equation as hyperbolic, parabolic or elliptic.
- (ii) Show that characteristic coordinates may be chosen to be $\zeta = y 3x^2$ and $\phi = y + 3x^2$.
- (iii) Use the characteristic coordinates and the chain rule to transform the above partial differential equation to its standard form.
- (iv) Hence, using the result of part (a), find the general solution u = u(x, y) of the equation.
- 04 (a) Show that Eigen value problem

$$X''(x) + \lambda X(x) = 0 \ (0 < x < \pi)$$
 with

$$X'(0) = X(\pi) = 0$$

has Eigen values $\lambda_n = \frac{(2n-1)^2}{4}$ and corresponding eigen function

$$X_n(x) = \cos\left(\frac{2n-1}{2}\right)x \quad (n=1,2,3,...)$$
.

(b) Consider the following differential equation

$$(4x+1)^2 u''(x) + 2(4x+1)u'(x) - u(x) + \lambda u(x) = 0$$
 with the boundary conditions $u(0) = 0$ and $u(1) = 0$.

By using the change of variable $x = \frac{1}{4}(t-1)$, find the general solution of the differential equation for the case $\lambda > 5$.

05 (a) Find the general solution of the following partial differential equations by using the integrating factor method.

(i)
$$\frac{\partial u(x,y)}{\partial x} + \frac{1}{x^2(1+y)}u = 2(1-y)e^{\frac{1}{x(1+y)}}; (x \neq 0, y \neq -1),$$

(ii)
$$y \frac{\partial^2 u(x, y)}{\partial y \partial x} - \frac{\partial u(x, y)}{\partial x} = xy^2 \cos(xy)$$
.

(b) Find the general solution of the following pair of partial differential equations:

$$\frac{\partial u}{\partial y} = 5y^4x - 3\cos 3x$$

$$\frac{\partial u}{\partial x} = y^5 + xe^x$$

(c) Find the set of characteristic curves for each of the following differential equations,

(i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} - u = 0; (x \neq 0),$$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} - u = 0; \ (x \neq 0, y \neq 0)$$

where u is a function of x and y only.

06 (a) Find the sinusoidal particular solution of the system of equations:

$$4\ddot{x}_1 + \ddot{x}_2 + 3\dot{x}_1 + 6x_1 + 4x_2 = 2\sin 2t - \cos 2t$$

$$\ddot{x}_1 + 4\ddot{x}_2 + 3\dot{x}_2 + 4x_1 + 3x_2 = \cos 2t.$$

(b) Solve the following inhomogeneous system:

$$\dot{x}_1 = x_1 + 2x_2 + 6e^{3t}$$

$$\dot{x}_2 = 2x_1 + x_2 + 2e^{3t}.$$