The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme-2012/2013
Final Examination
Applied Mathematics-Level 05
AMU3183/AME5183 – Numerical Methods – II

Duration: Two Hours

Date: 31.05.2013 Time: 1.30pm-3.30pm

Answer Four Questions Only.

- 01. (a) Write down the nth order Lagrange's interpolation polynomial for the data $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$.
 - (b) With the usual notation, prove that the error of Lagrange's interpolation method is $\frac{\pi(x)}{n+1!} f_{(c)}^{n+1}$, where $\pi(x) = (x-x_0)(x-x_1)....(x-x_n)$ and $c \in (x_0,x_n)$.
 - (c) Some values of the function $f(x) = \ln(x+1)$ are tabulated as follows.

x	0	0.3	0.6
$y = \ln(x+1)$	0	0.26236	0.47000

- (i) Construct the Lagrange's interpolating polynomial for the function. Hence find f(0.45).
- (ii) Using error bound, find the best approximation for the value f(0.45).
- 02. (a) Starting from $y_1 = Ey_0$ construct the Newton's forward difference formula.
 - (b) The following data are part of a table for $g(x) = \frac{\sin x}{x^2}$

X	0.1	0.2	0.3	0.4	0.5
g(x)	9.9833	4.9667	3.2836	2.4339	1.9177

- (i) Construct the Newton's interpolation formula for the function. Hence find g(0.25).
- (ii) Using error bound, find the best approximation for the value g(0.25).

- 03. (a) With the usual notation derive the least squares formulas to fit a straight line for a given set of data for fitting a straight line to a given set of data.
 - (b) Fit a curve of the type $y = \alpha e^{-\beta x}$ for the data given in table where α, β are real constant.

x	0.25	0.50	0.75	1.00	1.25	1.50
<u>y</u>	3.1	1.7	1.0	0.68	0.42	0.26

- 04. (a) Using Taylor Series expansion or otherwise derive the Euler Method to solve the first order initial value problem.
 - (b) Solve the differential equation

$$\frac{dy}{dx} + xy = 0; \quad y(0) = 1,$$

from x = 0 to x = 0.25 using Euler's method where h = 0.05 for the appropriate decimal places.

05. (a) Using the second order Runge-Kutta method solve

$$\frac{dy}{dx} = 1 + y^2 + x^3$$
; $y(1) = -4$, $h = 0.01$.

Hence find y(1.02).

(b) Using the fourth order Runge-Kutta method solve

$$\frac{dy}{dx} = 1 + y + x^2$$
; $y(0) = 0.5, h = 0.2$,

Hence find y(0.2) and y(0.4).

06. Write down the general formulas of the Modified Euler Predictor-Corrector method. Hence obtain y(0.2) and y(0.4) to the initial value problem

$$\frac{dy}{dt} = -\tan(y); \quad y(0) = 1, \ h = 0.2$$

with one correction at each time step.
