The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX 6241 – Field Theory Final Examination – 2009/2010

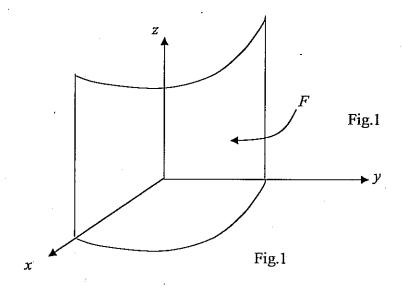
Date: 2010-03-10

Time: 0930 - 1230 hrs.

Answer any FIVE questions.

1.

- (a) A vector \underline{A} is given by $\underline{A} = \underline{a}_x x + \underline{a}_y y + \underline{a}_z z$, where \underline{a}_x , \underline{a}_y and \underline{a}_z are unit vectors in x, y and z directions. V(x,y,z) is a scalar function, Show that
 - (i) $\nabla \times (\nabla V) = 0$
 - (ii) $\nabla \cdot (\nabla \times \underline{A}) = 0$
- (b) The curved surface of a cylinder is given by $x^2 + y^2 = 4$, $0 \le z \le 5$. The surface F is defined as the portion of the above surface which lies in the first quadrant. (see Fig.1)



The surface F intercepts a magnetic field whose intensity \underline{B} is given by

$$\underline{B} = \underline{a}_x z + \underline{a}_y kx - \underline{a}_z 2y^2 z$$
, where k is a constant.

- (i) Calculate the total magnetic flux through the surface.
- (ii) What is the answer if the field component in the y-direction is increased by a factor 2?

2.

- (a) An electric field is given by $\underline{E} = \underline{a}_x 2xyz + \underline{a}_y x^2z + \underline{a}_z x^2y$.
 - (i) Show that $\underline{\underline{E}}$ is a conservative field.
 - (ii) Can \underline{E} be represented by the equation $\underline{E} = -\nabla V$? Justify your answer. (V = V(x, y, z) represents a scalar function.)
 - (iii) Determine the work done by moving a unit charge from (1, 1, 1) to (2, 3, 4).
- (b) (i) State Divergence theorem.
 - (ii) A vector field is given by $\underline{A} = \underline{a}_r r^2 + \underline{a}_z 2z$. Verify the Divergence theorem for the circular cylindrical region enclosed by r = R, z = 0 and z = h.

$$(\nabla \underline{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z})$$

3.

- (a) (i) State Stokes' theorem.
 - (ii) A vector field is given by $\underline{F} = \underline{a}_x y^3$. S^1 is the surface of the hemisphere given by $x^2 + y^2 + z^2 = 1$, $z \ge 0$.

 Using Stokes' theorem evaluate the integral $\iint \nabla \times \underline{F} . d\underline{S}$.

$$(\int_{0}^{2\pi}\sin^4\theta\,d\theta=\frac{3\pi}{4})$$

- (b) An electromagnetic wave propagates in a perfect dielectric medium. Starting from Maxwell's Curl equation for \underline{H} , show that the charge density ρ of the medium is unaffected by the electromagnetic field.
- (c) What can you say about ρ if the medium is not a perfect dielectric?

4.

- (a) Define *Poyinting* vector. What physical quantity does it represent? What is the direction of the *Poyinting* vector?
- (b) In a lossless medium, the instantaneous power leaving a closed surface can be found by calculating the rate of change of stored energy.
 - (i) Write an expression for the stored energy density assuming that the dielectric medium to be lossless.
 - (ii) Write an expression for the total instantaneous power.
 - (iii) An antenna is located at the origin of a spherical coordinate system. The \underline{E} field in free space at the coordinate point $P(r, \theta, \varphi)$ is given by

$$\underline{E} = \frac{E_0}{r} \sin \theta \sin(\omega (t - kr)) \ \underline{u}_{\theta}$$

10

- (α) Write an expression for the impedance of the medium assuming that the permittivity and the permeability of free space are ε_0 and μ_0 respectively.
- (β) Write an expression for the \underline{H} field at P.
- (γ) Write expressions for electric energy density (w_e) and magnetic energy density (w_m) respectively at r = R.
- (η) Derive an expression for the total instantaneous power radiated by the antenna.
- (c) Briefly explain how you would calculate total instantaneous power of the antenna if the medium were lossy.

5.

- (a) Write Maxwell's equations.
- (b) Simplify the above equations if field components vary sinusoidally with angular frequency ω .
- (c) \underline{E} and \underline{H} field components (\underline{E} and \underline{H}) in a simple, non-conducting, source free medium vary sinusoidally.
 - (i) Write expressions for $\nabla .\underline{B}, \nabla .\underline{H}, \nabla \times \underline{B}$ and $\nabla \times \underline{H}$.
 - (ii) Show that new field components defined by

$$\begin{split} \underline{\underline{E}}' &= \underline{E}\cos\alpha + \eta \underline{H}\sin\alpha \\ \underline{\underline{H}}' &= -\frac{\underline{E}}{\eta}\sin\alpha + \underline{H}\cos\alpha \text{ , where } \eta = \sqrt{\frac{\mu}{\varepsilon}} \text{ .} \end{split}$$

also satisfy Maxwell's equations.

- (d) (i) Modify the expression for $\nabla \times \underline{H}$ in (c) (i) if the medium has a non-zero conductivity.
 - (ii) Derive an expression for complex permittivity e^* and write an expression for loss tangent for (d)(i).

6.

- (a) A wave is propagating in a non-conducting source free medium.
 - (i) Using Maxwell's equations show that

$$\nabla^2 \underline{E} - \frac{1}{u^2} \frac{\partial^2 \underline{E}}{\partial t^2} = 0$$
, where *u* is a constant.

[For any given vector \underline{A} , $\nabla \times \nabla \times \underline{A} = \nabla(\nabla \cdot \underline{A}) - \nabla^2 \underline{A}$]

- (ii) (α) What is a plane wave?
 - (β) Simplify the equation in (a) (i) for a uniform plane wave whose field components vary sinusoidally.

- (iii) Solve the equations you derived in (β) and show that the total E field consists of two waves propagating in the positive- and negative z-directions.
- (iv) Find the value of the propagation constant if the wave is propagating in free space. Assume that the frequency of the wave is 220 MHz.
- (b) (i) Modify equations in (a) (i) if the medium is conducting.
 - (ii) Find the propagation constant of a sinusoidal electromagnetic wave propagating in a *lossy* dielectric.

7.

- (a) Write Laplace equation in Cartesian coordinates for a scalar potential V(x,y,z).
- (b) If the scalar potential function V(x,y,z) = X(x).Y(y).Z(z) show that X(x), Y(y) and Z(z) are the solutions of following 3 equations:

$$\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0 \quad , \quad \frac{d^2Y(y)}{dy^2} + k_y^2Y(y) = 0 \, , \quad \frac{d^2Z(z)}{dz^2} + k_z^2Z(z) = 0$$

 k_x , k_y and k_z are constants related by the equation $k_x^2 + k_y^2 + k_z^2 = 0$

(c) Solution to the differential equation $\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0$ is given by

$$X(x) = A_0 x + B$$
 if $k_x = 0$
 $= A_1 \sin k_x x + B_1 \cos k_x x$ if $k_x^2 > 0$
 $= Ce^{kx} + De^{-kx}$ if $k_x^2 < 0$

You may use this result to solve the following problem.

Two parallel plane electrodes (electrodes 1 and 2) separated by a distance b are maintained at a zero potential as shown in Fig.7. The electrodes extend infinitely in the positive x- and z directions. A third electrode (electrode 3) which extends infinitely in the z-direction, kept perpendicular to the two parallel electrodes is maintained at a potential V_0 .

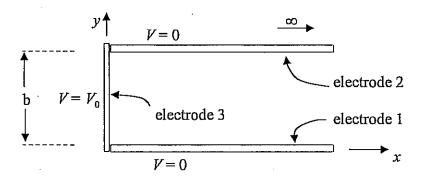


Fig.7

- (i) Write boundary conditions for the potential function.
- (ii) Show that

$$(\alpha)$$
 $Z(z) = A$

$$(\beta) X(x) = Be^{-kx}$$

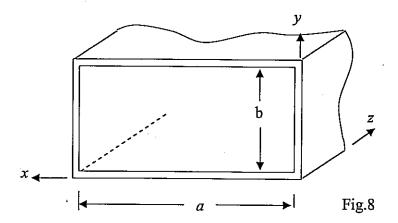
where A, B and k are constants.

8.

(a) (i) Write Maxwell's Curl equations for a source free medium.

Assuming that the field components vary sinusoidally, derive equations for E_x^0 , E_y^0 , H_x^0 and H_y^0 in terms of X and Y derivatives of E_z^0 and H_z^0 . (Use $\gamma = \frac{\partial}{\partial z}$)

- (ii) If the wave propagation is transverse magnetic, simplify the equations given in (i).
- (b) To find E_x^0 , E_y^0 , H_x^0 and H_y^0 for transverse magnetic mode in a waveguide (Fig. 8), let us try to evaluate E_z^0 .



If we write $E_z^0 = X(x).Y(y)$, we can solve wave equation $\nabla^2 \underline{E} = \gamma^2 \underline{E}$ for E_z^0 by substituting the expressions for E_x^0 , E_y^0 , H_x^0 , H_y^0 and E_z^0 in the equation.

- (i) If $X(x) = A_1 \cos k_x x + B_1 \sin k_x x$ and $Y(y) = C_1 \cos k_x y + D_1 \sin k_x y$
 - (α) write boundary conditions for E_y^0 and E_z^0 inside the waveguide.
 - (β) show that $E_z^0 = A \sin(k_x x) \sin(k_y y)$, where A is a constant.
- (ii) Find the values of E_x^0 , E_y^0 , H_x^0 and H_y^0 for transverse magnetic mode.
- (c) Why cannot TEM waves propagate in a waveguide?

